Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Equivalent property of a half-discrete Hilbert’s inequality with parameters

Authors: Zhenxiao Huang, Bicheng Yang

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

By using the weight functions and the idea of introducing parameters, a half-discrete Hilbert inequality with a nonhomogeneous kernel and its equivalent form are given. The equivalent statements of the constant factor are best possible related to parameters, and some particular cases are considered. The cases of a homogeneous kernel are also deduced.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

If \(0 < \sum_{m = 1}^{\infty } a_{m}^{2} < \infty ,0 < \sum_{n = 1}^{\infty } b_{n}^{2} < \infty \), then we have the following discrete Hilbert inequality with the best possible constant factor π [1]:
$$ \sum_{m = 1}^{\infty } \sum _{n = 1}^{\infty } \frac{a_{m}b_{n}}{m + n} < \pi \Biggl(\sum _{m = 1}^{\infty } a_{m}^{2} \sum_{n = 1}^{\infty } b_{n}^{2} \Biggr)^{1/2}. $$
(1)
Assuming that \(0 < \int _{0}^{\infty } f^{2}(x)\,dx < \infty \), \(0 < \int _{0}^{\infty } g^{2}(y)\,dy < \infty \), we still have the following Hilbert integral inequality [1]:
$$ \int _{0}^{\infty } \int _{0}^{\infty } \frac{f(x)g(y)}{x + y}\,dx\,dy < \pi \biggl( \int _{0}^{\infty } f^{2}(x)\,dx \int _{0}^{\infty } g^{2}(y)\,dy \biggr)^{1/2}, $$
(2)
where the constant factor π is the best possible. Inequalities (1) and (2) are important in analysis and its applications (cf. [213]).
We still have the following half-discrete Hilbert-type inequalities (cf. [1], Theorem 351): If \(K(x)(x > 0)\) is decreasing, \(p > 1\), \(\frac{1}{p} + \frac{1}{q} = 1\), \(0 < \phi (s) = \int _{0}^{\infty } K(x)x^{s - 1}\,dx <\infty \), then
$$\begin{aligned}& \int _{0}^{\infty } x^{p - 2} \Biggl(\sum _{n = 1}^{\infty } K(nx)a_{n} \Biggr)^{p} \,dx < \phi ^{p} \biggl(\frac{1}{q} \biggr)\sum _{n = 1}^{\infty } a_{n}^{p}, \end{aligned}$$
(3)
$$\begin{aligned}& \sum_{n = 1}^{\infty } n^{p - 2} \biggl( \int _{0}^{\infty } K (nx)f(x)\,dx \biggr)^{p} < \phi ^{p} \biggl(\frac{1}{q} \biggr) \int _{0}^{\infty } f^{p} (x)\,dx. \end{aligned}$$
(4)
In recent years, some new extensions of (3) and (4) were provided by [1419].
In 2016, Hong [20, 21] also considered some equivalent statements of the extensions of (1) and (2) with a few parameters. For the following work we refer to [2224].
In this paper, following [20], by the use of the weight functions and the idea of introducing parameters, a half-discrete Hilbert inequality with the nonhomogeneous kernel and its equivalent form are given. The equivalent statements of the constant factor are best possible related to parameters, and some particular cases are considered. The cases of a homogeneous kernel are also deduced.

2 Some lemmas

In what follows, we assume that \(p > 1\), \(\frac{1}{p} + \frac{1}{q} =1\), \(\lambda > 0\), σ, \(\sigma _{1} \le 1\), \(\sigma ,\sigma _{1} \in (0,\lambda ),f(x)\) is a nonnegative measurable function in \(\mathbb{R}_{ +} = (0,\infty )\), \(a_{n} \ge 0\) (\(n \in \mathbb{N} = \{ 1,2, \ldots \} \)), such that
$$ 0 < \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx< \infty ,\qquad 0 < \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} < \infty . $$
Lemma 1
Define the following weight functions:
$$\begin{aligned}& \omega _{\sigma } (\sigma _{1},n): = n^{\sigma } \int _{0}^{\infty } \frac{1}{(1 + xn)^{\lambda }} x^{\sigma _{1} - 1}\,dx \quad (n \in \mathbb{N}), \end{aligned}$$
(5)
$$\begin{aligned}& \varpi _{\sigma _{1}}(\sigma ,x): = x^{\sigma _{1}}\sum _{n = 1}^{\infty } \frac{1}{(1 + xn)^{\lambda }} n^{\sigma - 1} \quad (x \in \mathbb{R}_{ +} ). \end{aligned}$$
(6)
We have the following equality and inequalities:
$$\begin{aligned}& \omega _{\sigma } (\sigma _{1},n) = B(\sigma _{1}, \lambda - \sigma _{1})n^{\sigma - \sigma _{1}}\quad (n \in \mathbb{N}), \end{aligned}$$
(7)
$$\begin{aligned}& \biggl(B(\sigma ,\lambda - \sigma ) - \frac{x^{\sigma }}{\sigma } \biggr)x^{\sigma _{1} - \sigma } < \varpi _{\sigma _{1}}(\sigma ,x) < B(\sigma ,\lambda - \sigma ) \cdot x^{\sigma _{1} - \sigma } \quad (x \in \mathbb{R}_{ +} ), \end{aligned}$$
(8)
where \(B(u,v): = \int _{0}^{\infty } \frac{t^{u - 1}}{(1 + t)^{u + v}}\,dt\) (\(u,v> 0\)) is the Beta function.
Proof
Setting \(u = xn\), we have
$$\begin{aligned} \omega _{\sigma } (\sigma _{1},n) &= n^{\sigma } \int _{0}^{\infty } \frac{1}{(1 + u)^{\lambda }} \biggl( \frac{u}{n} \biggr)^{\sigma _{1} - 1} \frac{1}{n}\,du \\ &= n^{\sigma - \sigma _{1}} \int _{0}^{\infty } \frac{u^{\sigma _{1} - 1}}{(1 + u)^{\lambda }}\,du \\ &= B(\sigma _{1},\lambda - \sigma _{1})n^{\sigma -\sigma _{1}}, \end{aligned}$$
and then (7) follows. In view of the decreasing property, we find
$$\begin{aligned} \varpi _{\sigma _{1}}(\sigma ,x) &< x^{\sigma _{1}} \int _{0}^{\infty } \frac{t^{\sigma - 1}}{(1 + xt)^{\lambda }}\,dt \\ &= x^{\sigma _{1} - \sigma } \int _{0}^{\infty } \frac{u^{\sigma - 1}}{(1 + u)^{\lambda }}\,du \\ &= x^{\sigma _{1} - \sigma } B(\sigma ,\lambda - \sigma ), \\ \varpi _{\sigma _{1}}(\sigma ,x)&> x^{\sigma _{1}} \int _{1}^{\infty } \frac{t^{\sigma - 1}}{(1 + xt)^{\lambda }}\,dt \\ &= x^{\sigma _{1} - \sigma } \int _{x}^{\infty } \frac{u^{\sigma - 1}}{(1 + u)^{\lambda }}\,du \\ &= x^{\sigma _{1} - \sigma } \biggl[ \int _{0}^{\infty } \frac{u^{\sigma - 1}\,du}{(1 + u)^{\lambda }} - \int _{0}^{x} \frac{u^{\sigma - 1}\,du}{(1 + u)^{\lambda }} \biggr] \ge x^{\sigma _{1} - \sigma } \biggl(B(\sigma ,\lambda - \sigma ) - \int _{0}^{x} u^{\sigma - 1}\,du \biggr) \\ &= x^{\sigma _{1} - \sigma } \biggl(B(\sigma ,\lambda - \sigma ) - \frac{x^{\sigma }}{\sigma } \biggr). \end{aligned}$$
Hence, (8) follows. □
Lemma 2
Setting \(k_{\lambda } (\eta ): = B(\eta ,\lambda - \eta )(\eta = \sigma ,\sigma _{1})\), we have the following inequality:
$$\begin{aligned} I&: = \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} f(x)\,dx \\ &= \sum_{n = 1}^{\infty } \int _{0}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} f(x)\,dx \\ &< k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}( \sigma _{1}) \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(9)
Proof
By Hölder’s inequality (cf. [25]), we have
$$\begin{aligned} I &= \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{1}{(1 + xn)^{\lambda }} \biggl[\frac{x^{(1 - \sigma _{1})/q}}{n^{(1 - \sigma )/p}}f(x) \biggr] \biggl[ \frac{n^{(1 - \sigma )/p}}{x^{(1 - \sigma _{1})/q}}a_{n} \biggr]\,dx \\ &\le \Biggl[ \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{1}{(1 + xn)^{\lambda }} \frac{x^{(1 - \sigma _{1})p/q}}{n^{1 - \sigma }} f^{p}(x)\,dx \Biggr]^{\frac{1}{p}} \Biggl[\sum_{n = 1}^{\infty } \int _{0}^{\infty } \frac{1}{(1 + xn)^{\lambda }} \frac{n^{(1 - \sigma )q/p}}{x^{1 - \sigma _{1}}} \,dx\,a_{n}^{q} \Biggr]^{\frac{1}{q}} \\ &= \biggl[\int _{0}^{\infty } \varpi _{\sigma _{1}}(\sigma ,x)x^{p(1 - \sigma _{1}) - 1}f^{p}(x)\,dx \biggr]^{\frac{1}{p}} \Biggl[\sum _{n = 1}^{\infty } \omega _{\sigma } (\sigma _{1},n) n^{q(1 - \sigma ) - 1}a_{n}^{q}\Biggr]^{\frac{1}{q}}. \end{aligned}$$
Then, by (7) and (8), we have (9). □
By (9), for \(\sigma _{1} = \sigma \), we find \(0 < \int _{0}^{\infty } x^{p(1 - \sigma ) - 1}f^{p}(x)\,dx < \infty \), \(0 < \sum_{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} a_{n}^{q} < \infty \), and
$$ \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} f(x)\,dx< k_{\lambda } (\sigma ) \biggl[ \int _{0}^{\infty } x^{p(1 - \sigma ) - 1}f^{p}(x)\,dx \biggr]^{\frac{1}{p}} \Biggl[\sum_{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} a_{n}^{q} \Biggr]^{\frac{1}{q}}. $$
(10)
Lemma 3
The constant factor \(k_{\lambda } (\sigma ) = B(\sigma ,\lambda - \sigma )\) in (10) is the best possible.
Proof
For \(0 < \varepsilon < q\sigma \), we set
$$ \tilde{a}_{n} = n^{\sigma - \frac{\varepsilon }{q} - 1}\quad (n \in \mathbb{N}),\qquad \tilde{f}(x) = \textstyle\begin{cases} \sigma + \frac{\varepsilon }{p} - 1,&0 < x \le 1, \\ 0,&x > 1. \end{cases} $$
If there exists a constant \(M \le k_{\lambda } (\sigma )\), such that (10) is valid when replacing \(k_{\lambda } (\sigma )\) by M, then, for \(a_{n} = \tilde{a}_{n}\), \(f = \tilde{f}\), we have
$$ \tilde{I}: = \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{\tilde{a}_{n}}{(1 + xn)^{\lambda }} \tilde{f}(x)\,dx< M \biggl[ \int _{0}^{\infty } x^{p(1 - \sigma ) - 1}\tilde{f}^{p}(x) \,dx \biggr]^{\frac{1}{p}} \Biggl[\sum_{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} \tilde{a}_{n}^{q} \Biggr]^{\frac{1}{q}}. $$
We obtain
$$\begin{aligned} \tilde{I} &< M\biggl[ \int _{0}^{1} x^{p(1 - \sigma ) - 1}x^{p(\sigma + \frac{\varepsilon }{p} - 1)}\,dx \biggr]^{\frac{1}{p}}\Biggl[\sum_{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} n^{q(\sigma - \frac{\varepsilon }{q} - 1)}\Biggr]^{\frac{1}{q}} \\ &= M\biggl( \int _{0}^{1} x^{\varepsilon - 1}\,dx \biggr)^{\frac{1}{p}}\Biggl(1 + \sum_{n = 2}^{\infty } n^{ - \varepsilon - 1} \Biggr)^{\frac{1}{q}} \\ &< M\biggl( \int _{0}^{1} x^{\varepsilon - 1}\,dx \biggr)^{\frac{1}{p}}\biggl(1 + \int _{1}^{\infty } x^{ - \varepsilon - 1}\,dx \biggr)^{\frac{1}{q}} \\ &= \frac{M}{\varepsilon } (\varepsilon + 1)^{\frac{1}{q}}. \end{aligned}$$
In view of (8), we find
$$\begin{aligned} \tilde{I} &= \int _{0}^{1} x^{\varepsilon - 1} \Biggl[x^{(\sigma - \frac{\varepsilon }{q})} \sum_{n = 1}^{\infty } \frac{1}{(1 + xn)^{\lambda }} n^{(\sigma - \frac{\varepsilon }{q}) - 1} \Biggr]\,dx \\ &> \int _{0}^{1} x^{\varepsilon - 1} \biggl(B \biggl( \sigma - \frac{\varepsilon }{q},\lambda - \sigma + \frac{\varepsilon }{q} \biggr) - \frac{x^{\sigma - \frac{\varepsilon }{q}}}{\sigma - \frac{\varepsilon }{q}} \biggr)\,dx \\ & = \frac{1}{\varepsilon } B\biggl(\sigma - \frac{\varepsilon }{q},\lambda - \sigma + \frac{\varepsilon }{q}\biggr) - \frac{1}{\sigma - \frac{\varepsilon }{q}} \int _{0}^{1} x^{\sigma + \frac{\varepsilon }{p} - 1}\,dx \\ &= \frac{1}{\varepsilon } \biggl[B\biggl(\sigma - \frac{\varepsilon }{q},\lambda - \sigma + \frac{\varepsilon }{q}\biggr) - \frac{\varepsilon }{(\sigma - \frac{\varepsilon }{q})(\sigma + \frac{\varepsilon }{p})}\biggr]. \end{aligned}$$
Then we have
$$ B \biggl(\sigma - \frac{\varepsilon }{q},\lambda - \sigma + \frac{\varepsilon }{q} \biggr) - \frac{\varepsilon }{(\sigma - \frac{\varepsilon }{q})(\sigma + \frac{\varepsilon }{p})} < M(\varepsilon + 1)^{\frac{1}{q}}. $$
For \(\varepsilon \to 0^{ +} \), in view of the continuous property of the Beta function, we find
$$\begin{aligned} B(\sigma ,\lambda - \sigma ) &= \lim_{\varepsilon \to 0^{ +}} \biggl[B\biggl( \sigma - \frac{\varepsilon }{q},\lambda - \sigma + \frac{\varepsilon }{q}\biggr) - \frac{\varepsilon }{(\sigma - \frac{\varepsilon }{q})(\sigma + \frac{\varepsilon }{p})}\biggr] \\ &\le \lim_{\varepsilon \to 0^{ +}} M(\varepsilon + 1)^{\frac{1}{q}} = M. \end{aligned}$$
Hence, \(M = B(\sigma ,\lambda - \sigma )\) is the best possible constant factor of (10). □
Setting \(\tilde{\sigma } = \frac{\sigma }{p} + \frac{\sigma _{1}}{q}\) (\(\sigma ,\sigma _{1} \le 1,\sigma ,\sigma _{1} \in (0,\lambda )\)), we may rewrite (9) as follows:
$$ I < k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}( \sigma _{1}) \biggl[ \int _{0}^{\infty } x^{p(1 - \tilde{\sigma } ) - 1}f^{p}(x)\,dx \biggr]^{\frac{1}{p}} \Biggl[\sum_{n = 1}^{\infty } n^{q(1 - \tilde{\sigma } ) - 1} a_{n}^{q} \Biggr]^{\frac{1}{q}}. $$
(11)
The parameter σ̃ in (11) also satisfies
$$\begin{aligned} 0 &< k_{\lambda } (\tilde{\sigma } ) = k_{\lambda } \biggl( \frac{\sigma }{p} + \frac{\sigma _{1}}{q} \biggr) \\ &= \int _{0}^{\infty } \frac{1}{(1 + u)^{\lambda }} \bigl(u^{\frac{\sigma - 1}{p}} \bigr) \bigl(u^{\frac{\sigma _{1} - 1}{q}} \bigr)\,du \\ &\le \biggl[ \int _{0}^{\infty } \frac{u^{\sigma - 1}}{(1 + u)^{\lambda }}\,du \biggr]^{\frac{1}{p}} \biggl[ \int _{0}^{\infty } \frac{u^{\sigma _{1} - 1}}{(1 + u)^{\lambda }}\,du \biggr]^{\frac{1}{q}} \\ &= k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) \\ &< \infty , \end{aligned}$$
(12)
by Hölder’s inequality, and \(\tilde{\sigma } \le \frac{1}{p} + \frac{1}{q} = 1\), \(\tilde{\sigma } \in (0,\lambda )\), such that
$$ k_{\lambda } (\tilde{\sigma } ) - \frac{x^{\tilde{\sigma }}}{\tilde{\sigma }} < x^{\tilde{\sigma }} \sum _{n = 1}^{\infty } \frac{n^{\tilde{\sigma } - 1}}{(1 + xn)^{\lambda }} < k_{\lambda } (\tilde{\sigma } ). $$
Lemma 4
If the constant factor \(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\) in (11) is the best possible, then we have \(\sigma _{1} = \sigma \).
Proof
If the constant factor \(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\) in (11) is the best possible, then, by (10), the unique best possible constant factor must be \(k_{\lambda } (\tilde{\sigma } )\), namely, \(k_{\lambda } (\tilde{\sigma } ) = k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\). Since the condition of (12) keeps the form of equality is that there exist constants A and B, such that they are not all zero and \(Au^{\sigma - 1} =Bu^{\sigma _{1} - 1}\) a.e. in \(\mathbb{R}_{ +}\). Assuming that \(A \ne0 \), it follows that \(u^{\sigma - \sigma _{1}} = \frac{B}{A}\) a.e. in \(\mathbb{R}_{ +} \), and then \(\sigma - \sigma _{1} = 0\), namely, \(\sigma _{1} = \sigma\). □

3 Main results and some corollaries

Theorem 1
Inequality (9) is equivalent to the following inequalities:
$$\begin{aligned} J_{1}&: = \Biggl\{ \sum_{n = 1}^{\infty } n^{p(\frac{\sigma }{p} + \frac{\sigma _{1}}{q}) - 1} \biggl[ \int _{0}^{\infty } \frac{f(x)}{(1 + xn)^{\lambda }}\,dx \biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &< k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}( \sigma _{1}) \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}}, \end{aligned}$$
(13)
$$\begin{aligned} J_{2}&: = \Biggl\{ \int _{0}^{\infty } x^{q(\frac{\sigma }{p} + \frac{\sigma _{1}}{q}) - 1} \Biggl[\sum _{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} \Biggr]^{q} \,dx \Biggr\} ^{\frac{1}{q}} \\ &< k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}( \sigma _{1}) \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(14)
If the constant factor in (9) is the best possible, then so is the constant factor in (13) and (14).
Proof
Suppose that (13) (or (14)) is valid. By Hölder’s inequality, we have
$$\begin{aligned} I &= \sum_{n = 1}^{\infty } \biggl[n^{\frac{ - 1}{p} + (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})} \int _{0}^{\infty } \frac{f(x)}{(1 + xn)^{\lambda }}\,dx \biggr] \bigl[n^{\frac{1}{p} - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})}a_{n} \bigr] \\ &\le J_{1} \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \end{aligned}$$
(15)
$$\begin{aligned} I &= \int _{0}^{\infty } \bigl[x^{\frac{1}{q} - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})}f(x) \bigr] \Biggl[x^{\frac{ - 1}{q} + (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})}\sum_{n = 1}^{\infty } \frac{1}{(1 + xn)^{\lambda }} a_{n} \Biggr]\,dx \\ &\le \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}}J_{2}. \end{aligned}$$
(16)
Then, by (13) (or (14)), we have (9). On the other hand, assuming (9) is valid, we set
$$ a_{n}: = n^{p(\frac{\sigma }{p} + \frac{\sigma _{1}}{q}) - 1} \biggl[ \int _{0}^{\infty } \frac{f(x)}{(1 + xn)^{\lambda }}\,dx \biggr]^{p - 1}\quad (n \in \mathbb{N}). $$
If \(J_{1} = 0\), then (13) is naturally valid; if \(J_{1} = \infty \), then it is impossible that it makes (13) valid. Suppose that \(0 < J_{1} < \infty \). By (9) we have
$$\begin{aligned}& \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}a_{n}^{q} \\& \quad = J_{1}^{p} = I < k_{\lambda }^{\frac{1}{p}}( \sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \\& \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{p}} = J_{1} < k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}}, \end{aligned}$$
namely, (13) follows.
In the same way, assuming (9) is valid, we set
$$ f(x): = x^{q(\frac{\sigma }{p} + \frac{\sigma _{1}}{q}) - 1} \Biggl[\sum_{n = 1}^{\infty } \frac{1}{(1 + xn)^{\lambda }} a_{n} \Biggr]^{q - 1}\quad (x \in \mathbb{R}). $$
If \(J_{2} = 0\), then (14) is naturally valid; if \(J_{2} = \infty \), then it is impossible that makes (14) valid. Suppose that \(0 < J_{2} < \infty \). By (9) we have
$$\begin{aligned}& \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \\& \quad =J_{2}^{q} = I< k_{\lambda }^{\frac{1}{p}}( \sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \\& \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{q}} = J_{2} < k_{\lambda }^{\frac{1}{p}}( \sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) \Biggl\{ \sum _{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}, \end{aligned}$$
namely, (14) follows. Hence, inequalities (9), (13) and (14) are equivalent.
If the constant factor in (9) is the best possible, then so is constant factor in (13) (or (14)). Otherwise, by (15) (or (16)), we would reach the contradiction that the constant factor in (9) is not the best possible. □
Theorem 2
The statements (i), (ii), (iii) and (iv) are equivalent:
(i)
\(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\) is independent of \(p,q\);
 
(ii)
\(k_{\lambda }^{\frac{1}{p}}(\sigma)k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\) is expressed as a single integral;
 
(iii)
\(k_{\lambda }^{\frac{1}{p}}(\sigma)k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\) in (9) is the best possible constant;
 
(iv)
\(\sigma _{1} = \sigma\).
 
If the statement (iv) follows, then we have the following equivalent inequalities with the best possible constant factor \(B(\sigma ,\lambda - \sigma )\):
$$\begin{aligned}& \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} f(x)\,dx \\& \quad < B(\sigma ,\lambda - \sigma ) \biggl[ \int _{0}^{\infty } x^{p(1 - \sigma ) - 1}f^{p}(x)\,dx \biggr]^{\frac{1}{p}} \Biggl[\sum_{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} a_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(17)
$$\begin{aligned}& \Biggl[\sum_{n = 1}^{\infty } n^{p\sigma - 1} \biggl( \int _{0}^{\infty } \frac{f(x)}{(1 + xn)^{\lambda }}\,dx \biggr)^{p} \Biggr]^{\frac{1}{p}} \\& \quad < B(\sigma ,\lambda - \sigma ) \biggl[ \int _{0}^{\infty } x^{p(1 - \sigma ) - 1}f^{p}(x)\,dx \biggr]^{\frac{1}{p}}, \end{aligned}$$
(18)
$$\begin{aligned}& \Biggl[ \int _{0}^{\infty } x^{q\sigma - 1} \Biggl(\sum _{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} \Biggr)^{q} \,dx \Biggr]^{\frac{1}{q}} \\& \quad < B(\sigma ,\lambda - \sigma ) \Biggl[\sum_{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} a_{n}^{q} \Biggr]^{\frac{1}{q}}. \end{aligned}$$
(19)
Proof
(i)⇒(ii). By (i) we have
$$ k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) = \lim_{p \to 1^{ +}} k_{\lambda }^{\frac{1}{p}}( \sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) = k_{\lambda } (\sigma ), $$
namely, \(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\) is expressed as a single integral.
(ii)⇒(iv). In (12), if \(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1})\) is expressed as a single integral \(k_{\lambda } (\frac{\sigma }{p} + \frac{\sigma _{1}}{q})\), then (12) keeps the form of equality. In view of the proof of Lemma 4, if and only if \(\sigma _{1} = \sigma \), (12) keeps the form of equality.
(iv)⇒(i). If \(\sigma _{1} = \sigma \), then \(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) = k_{\lambda } (\sigma )\), which is independent of \(p,q\). Hence, we have (i) ↔ (ii) ⇔ (iv).
(iii)⇒(iv). By Lemma 4, we have \(\sigma _{1} = \sigma \). (iv)⇒(iii). By Lemma 3, \(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\sigma _{1}) = k_{\lambda } (\sigma )\) in (9) (for \(\sigma _{1} = \sigma \)) is the best possible constant. Therefore, we have (iii) ⇔ (iv).
Hence, the statements (i), (ii), (iii) and (iv) are equivalent. □
Replacing x by \(\frac{1}{x}\), and then \(x^{\lambda - 2}f(\frac{1}{x})\) by \(f(x)\) in Theorem 1, setting \(\sigma _{1} = \lambda - \mu \), we have the following.
Corollary 1
The following inequalities with the homogeneous kernel are equivalent:
$$\begin{aligned} &\int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{(x + n)^{\lambda }} f(x)\,dx \\ &\quad < k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}( \lambda - \mu ) \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\lambda - \sigma }{p} + \frac{\mu }{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}} \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\lambda - \mu }{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(20)
$$\begin{aligned} &\Biggl\{ \sum_{n = 1}^{\infty } n^{p(\frac{\sigma }{p} + \frac{\lambda - \mu }{q}) - 1} \biggl[ \int _{0}^{\infty } \frac{f(x)}{(x + n)^{\lambda }}\,dx \biggr]^{p} \Biggr\} ^{\frac{1}{p}} \\ &\quad < k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}( \lambda - \mu ) \biggl\{ \int _{0}^{\infty } x^{p[1 - (\frac{\lambda - \sigma }{p} + \frac{\mu }{q})] - 1}f^{p}(x)\,dx \biggr\} ^{\frac{1}{p}}, \end{aligned}$$
(21)
$$\begin{aligned} &\Biggl\{ \int _{0}^{\infty } x^{q(\frac{\lambda - \sigma }{p} + \frac{\mu }{q}) - 1} \Biggl[\sum _{n = 1}^{\infty } \frac{a_{n}}{(x + n)^{\lambda }} \Biggr]^{q} \,dx \Biggr\} ^{\frac{1}{q}} \\ &\quad < k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}( \lambda - \mu ) \Biggl\{ \sum_{n = 1}^{\infty } n^{q[1 - (\frac{\sigma }{p} + \frac{\lambda - \mu }{q})] - 1} a_{n}^{q} \Biggr\} ^{\frac{1}{q}}. \end{aligned}$$
(22)
If the constant factor in (20) is the best possible, then so is the constant factor in (21) and (22).
Corollary 2
The statements (I), (II), (III) and (IV) are equivalent:
(I)
\(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\lambda - \mu )\) is independent of \(p,q\);
 
(II)
\(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\lambda - \mu )\) is expressed as a single integral;
 
(III)
\(k_{\lambda }^{\frac{1}{p}}(\sigma )k_{\lambda }^{\frac{1}{q}}(\lambda - \mu )\) in (20) is the best possible constant;
 
(IV)
\(\mu + \sigma = \lambda\).
 
If the statement (IV) follows, then we have the following equivalent inequalities with the best possible constant factor \(B(\mu ,\sigma )\):
$$ \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{(x + n)^{\lambda }} f(x)\,dx< B(\mu ,\sigma ) \biggl[ \int _{0}^{\infty } x^{p(1 - \mu ) - 1}f^{p}(x)\,dx \biggr]^{\frac{1}{p}} \Biggl[\sum_{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} a_{n}^{q} \Biggr]^{\frac{1}{q}}. $$
(23)
$$ \Biggl\{ \sum_{n = 1}^{\infty } n^{p\sigma - 1} \biggl[ \int _{0}^{\infty } \frac{f(x)}{(x + n)^{\lambda }}\,dx \biggr]^{p} \Biggr\} ^{\frac{1}{p}}< B(\mu ,\sigma ) \biggl[ \int _{0}^{\infty } x^{p(1 - \sigma ) - 1}f^{p}(x)\,dx \biggr]^{\frac{1}{p}}, $$
(24)
$$ \Biggl\{ \int _{0}^{\infty } x^{q\mu - 1} \Biggl[\sum _{n = 1}^{\infty } \frac{a_{n}}{(x + n)^{\lambda }} \Biggr]^{q} \,dx \Biggr\} ^{\frac{1}{q}}< B(\mu ,\sigma ) \Biggl[\sum _{n = 1}^{\infty } n^{q(1 - \sigma ) - 1} a_{n}^{q} \Biggr]^{\frac{1}{q}}. $$
(25)
Remark 1
(i) For \(\sigma = \frac{1}{p}( < \lambda )\) in (17), (18) and (19), we have the following equivalent inequalities with the nonhomogeneous kernel and the best possible constant factor \(B(\frac{1}{p},\lambda - \frac{1}{p})\):
$$ \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} f(x)\,dx< B \biggl(\frac{1}{p},\lambda - \frac{1}{p} \biggr) \biggl( \int _{0}^{\infty } x^{p - 2}f^{p}(x)\,dx \biggr)^{\frac{1}{p}} \Biggl(\sum_{n = 1}^{\infty } a_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(26)
$$ \Biggl\{ \sum_{n = 1}^{\infty } \biggl[ \int _{0}^{\infty } \frac{f(x)}{(1 + xn)^{\lambda }}\,dx \biggr]^{p} \Biggr\} ^{\frac{1}{p}}< B \biggl(\frac{1}{p},\lambda - \frac{1}{p} \biggr) \biggl( \int _{0}^{\infty } x^{p - 2}f^{p}(x)\,dx \biggr)^{\frac{1}{p}}, $$
(27)
$$ \Biggl\{ \int _{0}^{\infty } x^{q - 2} \Biggl[\sum _{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} \Biggr]^{q} \,dx \Biggr\} ^{\frac{1}{q}}< B \biggl(\frac{1}{p},\lambda - \frac{1}{p} \biggr) \Biggl(\sum_{n = 1}^{\infty } a_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(28)
(ii) For \(\sigma = \frac{1}{q}( < \lambda )\) in (17), (18) and (19), we have the following equivalent inequalities with the best possible constant factor \(B(\frac{1}{q},\lambda - \frac{1}{q})\):
$$ \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} f(x)\,dx< B \biggl(\frac{1}{q},\lambda - \frac{1}{q} \biggr) \biggl( \int _{0}^{\infty } f^{p}(x)\,dx \biggr)^{\frac{1}{p}} \Biggl(\sum_{n = 1}^{\infty } n^{q - 2}a_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(29)
$$ \Biggl\{ \sum_{n = 1}^{\infty } n^{p - 2} \biggl[ \int _{0}^{\infty } \frac{f(x)}{(1 + xn)^{\lambda }}\,dx \biggr]^{p} \Biggr\} ^{\frac{1}{p}}< B \biggl(\frac{1}{q},\lambda - \frac{1}{q} \biggr) \biggl( \int _{0}^{\infty } f^{p}(x)\,dx \biggr)^{\frac{1}{p}}, $$
(30)
$$ \Biggl\{ \int _{0}^{\infty } \Biggl[ \sum _{n = 1}^{\infty } \frac{a_{n}}{(1 + xn)^{\lambda }} \Biggr]^{q} \,dx \Biggr\} ^{\frac{1}{q}}< B \biggl(\frac{1}{q},\lambda - \frac{1}{q} \biggr) \Biggl(\sum_{n = 1}^{\infty } n^{q - 2}a_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(31)
(iii) For \(\lambda = 1\), \(\sigma = \frac{1}{p}\), \(\mu = \frac{1}{q}\) in (23), (24) and (25), we have the following equivalent inequalities with the homogeneous kernel and the best possible constant factor \(\frac{\pi }{\sin (\frac{\pi }{p})}\):
$$ \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{x + n} f(x)\,dx< \frac{\pi }{\sin (\frac{\pi }{p})} \biggl( \int _{0}^{\infty } f^{p}(x)\,dx \biggr)^{\frac{1}{p}} \Biggl(\sum_{n = 1}^{\infty } a_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(32)
$$ \Biggl[\sum_{n = 1}^{\infty } \biggl( \int _{0}^{\infty } \frac{f(x)}{x + n}\,dx \biggr)^{p} \Biggr]^{\frac{1}{p}}< \frac{\pi }{\sin (\frac{\pi }{p})} \biggl( \int _{0}^{\infty } f^{p}(x)\,dx \biggr)^{\frac{1}{p}}, $$
(33)
$$ \Biggl[ \int _{0}^{\infty } \Biggl( \sum _{n = 1}^{\infty } \frac{a_{n}}{x + n} \Biggr)^{q} \,dx \Biggr]^{\frac{1}{q}}< \frac{\pi }{\sin (\frac{\pi }{p})} \Biggl(\sum _{n = 1}^{\infty } a_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(34)
(iv) For \(\lambda = 1\), \(\sigma = \frac{1}{q}\), \(\mu = \frac{1}{p}\) in (23), (24) and (25), we have the following equivalent inequalities with the best possible constant factor \(\frac{\pi }{\sin (\frac{\pi }{p})}\):
$$ \int _{0}^{\infty } \sum_{n = 1}^{\infty } \frac{a_{n}}{x + n} f(x)\,dx< \frac{\pi }{\sin (\frac{\pi }{p})} \biggl( \int _{0}^{\infty } x^{p - 2}f^{p}(x)\,dx \biggr)^{\frac{1}{p}} \Biggl(\sum_{n = 1}^{\infty } n^{q - 2}a_{n}^{q} \Biggr)^{\frac{1}{q}}, $$
(35)
$$ \Biggl[\sum_{n = 1}^{\infty } n^{p - 2} \biggl( \int _{0}^{\infty } \frac{f(x)}{x + n}\,dx \biggr)^{p} \Biggr]^{\frac{1}{p}}< \frac{\pi }{\sin (\frac{\pi }{p})} \biggl( \int _{0}^{\infty } x^{p - 2}f^{p}(x)\,dx \biggr)^{\frac{1}{p}}, $$
(36)
$$ \Biggl[ \int _{0}^{\infty } x^{q - 2} \Biggl( \sum _{n = 1}^{\infty } \frac{a_{n}}{x + n} \Biggr)^{q} \,dx \Biggr]^{\frac{1}{q}}< \frac{\pi }{\sin (\frac{\pi }{p})} \Biggl(\sum _{n = 1}^{\infty } n^{q - 2}a_{n}^{q} \Biggr)^{\frac{1}{q}}. $$
(37)

4 Conclusions

In this paper, by using the weight functions and the idea of introducing parameters, a half-discrete Hilbert inequality with the nonhomogeneous kernel and its equivalent form are given in Theorem 1. The equivalent statements of the constant factor being best possible related to parameters, and some particular cases are considered in Theorem 2 and Remark 1. The cases of homogeneous kernel are deduced in Corollary 1 and Corollary 2. The lemmas and theorems provide an extensive account of this type of inequalities.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934) MATH
2.
go back to reference Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing, China (2009) Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing, China (2009)
3.
go back to reference Yang, B.C.: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., The United, Arab Emirates (2009) Yang, B.C.: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., The United, Arab Emirates (2009)
4.
5.
go back to reference Xu, J.S.: Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007) MathSciNet Xu, J.S.: Hardy-Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007) MathSciNet
6.
go back to reference Yang, B.C.: On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 325, 529–541 (2007) MathSciNetCrossRef Yang, B.C.: On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 325, 529–541 (2007) MathSciNetCrossRef
7.
go back to reference Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree −2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013) MathSciNetMATH Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree −2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013) MathSciNetMATH
8.
go back to reference Zhen, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014) Zhen, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014)
9.
go back to reference Xin, D.M.: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70–74 (2010) MathSciNet Xin, D.M.: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70–74 (2010) MathSciNet
10.
go back to reference Azar, L.E.: The connection between Hilbert and Hardy inequalities. J. Inequal. Appl. 2013, Article ID 452 (2013) MathSciNetCrossRef Azar, L.E.: The connection between Hilbert and Hardy inequalities. J. Inequal. Appl. 2013, Article ID 452 (2013) MathSciNetCrossRef
11.
go back to reference Batbold, T., Sawano, Y.: Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces. Math. Inequal. Appl. 20, 263–283 (2017) MathSciNetMATH Batbold, T., Sawano, Y.: Sharp bounds for m-linear Hilbert-type operators on the weighted Morrey spaces. Math. Inequal. Appl. 20, 263–283 (2017) MathSciNetMATH
12.
go back to reference Adiyasuren, V., Batbold, T., Krnic, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10, 320–337 (2016) MathSciNetCrossRef Adiyasuren, V., Batbold, T., Krnic, M.: Multiple Hilbert-type inequalities involving some differential operators. Banach J. Math. Anal. 10, 320–337 (2016) MathSciNetCrossRef
13.
go back to reference Adiyasuren, V., Batbold, T., Krni´c, M.: Hilbert-type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 18, 111–124 (2015) MathSciNetMATH Adiyasuren, V., Batbold, T., Krni´c, M.: Hilbert-type inequalities involving differential operators, the best constants and applications. Math. Inequal. Appl. 18, 111–124 (2015) MathSciNetMATH
14.
go back to reference Rassias, M.T., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75–93 (2013) MathSciNetMATH Rassias, M.T., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75–93 (2013) MathSciNetMATH
15.
go back to reference Yang, B.C., Krnic, M.: A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequal. 6(3), 401–417 (2012) MathSciNetMATH Yang, B.C., Krnic, M.: A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequal. 6(3), 401–417 (2012) MathSciNetMATH
16.
go back to reference MTh, R., Yang, B.C.: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263–277 (2013) MathSciNet MTh, R., Yang, B.C.: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263–277 (2013) MathSciNet
17.
go back to reference MTh, R., Yang, B.C.: On a multidimensional half -discrete Hilbert - type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800–813 (2013) MathSciNet MTh, R., Yang, B.C.: On a multidimensional half -discrete Hilbert - type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800–813 (2013) MathSciNet
18.
go back to reference Huang, Z.X., Yang, B.C.: On a half-discrete Hilbert-type inequality similar to Mulholland’s inequality. J. Inequal. Appl. 2013, Article ID 290 (2013) MathSciNetCrossRef Huang, Z.X., Yang, B.C.: On a half-discrete Hilbert-type inequality similar to Mulholland’s inequality. J. Inequal. Appl. 2013, Article ID 290 (2013) MathSciNetCrossRef
19.
go back to reference Yang, B.C., Lebnath, L.: Half-Discrete Hilbert-Type Inequalities. World Scientific Publishing, Singapore (2014) CrossRef Yang, B.C., Lebnath, L.: Half-Discrete Hilbert-Type Inequalities. World Scientific Publishing, Singapore (2014) CrossRef
20.
go back to reference Hong, Y., Wen, Y.: A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 37A(3), 329–336 (2016) MATH Hong, Y., Wen, Y.: A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor. Ann. Math. 37A(3), 329–336 (2016) MATH
21.
go back to reference Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernel and applications. J. Jilin Univ. Sci. Ed. 55(2), 189–194 (2017) Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernel and applications. J. Jilin Univ. Sci. Ed. 55(2), 189–194 (2017)
22.
go back to reference Hong, Y., Huang, Q.L., Yang, B.C., Liao, J.L.: The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. J. Inequal. Appl. 2017, Article ID 316 (2017) MathSciNetCrossRef Hong, Y., Huang, Q.L., Yang, B.C., Liao, J.L.: The necessary and sufficient conditions for the existence of a kind of Hilbert-type multiple integral inequality with the non-homogeneous kernel and its applications. J. Inequal. Appl. 2017, Article ID 316 (2017) MathSciNetCrossRef
23.
go back to reference Xin, D.M., Yang, B.C., Wang, A.Z.: Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane. J. Funct. Spaces 2018, Article ID ID2691816 (2018) MathSciNet Xin, D.M., Yang, B.C., Wang, A.Z.: Equivalent property of a Hilbert-type integral inequality related to the beta function in the whole plane. J. Funct. Spaces 2018, Article ID ID2691816 (2018) MathSciNet
24.
go back to reference Hong, Y., He, B., Yang, B.C.: Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory. JIPAM. J. Inequal. Pure Appl. Math. 12(3), 777–788 (2018) MathSciNet Hong, Y., He, B., Yang, B.C.: Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory. JIPAM. J. Inequal. Pure Appl. Math. 12(3), 777–788 (2018) MathSciNet
25.
go back to reference Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan, China (2004) Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan, China (2004)
Metadata
Title
Equivalent property of a half-discrete Hilbert’s inequality with parameters
Authors
Zhenxiao Huang
Bicheng Yang
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1926-1

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner