Skip to main content
Top

2024 | OriginalPaper | Chapter

Equivariant Parameter Sharing for Porous Crystalline Materials

Authors : Marko Petković, Pablo Romero Marimon, Vlado Menkovski, Sofía Calero

Published in: Advances in Intelligent Data Analysis XXII

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Efficiently predicting properties of porous crystalline materials has great potential to accelerate the high throughput screening process for developing new materials, as simulations carried out using first principles models are often computationally expensive. To effectively make use of Deep Learning methods to model these materials, we need to utilize the symmetries present in crystals, which are defined by their space group. Existing methods for crystal property prediction either have symmetry constraints that are too restrictive or only incorporate symmetries between unit cells. In addition, these models do not explicitly model the porous structure of the crystal. In this paper, we develop a model which incorporates the symmetries of the unit cell of a crystal in its architecture and explicitly models the porous structure. We evaluate our model by predicting the heat of adsorption of CO\(_2\) for different configurations of the mordenite and ZSM-5 zeolites. Our results confirm that our method performs better than existing methods for crystal property prediction and that the inclusion of pores results in a more efficient model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baerlocher, C., McCusker, L.B., Olson, D.H.: Atlas of zeolite framework types. Elsevier (2007) Baerlocher, C., McCusker, L.B., Olson, D.H.: Atlas of zeolite framework types. Elsevier (2007)
2.
go back to reference Chen, C., Ye, W., Zuo, Y., Zheng, C., Ong, S.P.: Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31(9), 3564–3572 (2019)CrossRef Chen, C., Ye, W., Zuo, Y., Zheng, C., Ong, S.P.: Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31(9), 3564–3572 (2019)CrossRef
3.
go back to reference Choi, H.J., Jo, D., Hong, S.B.: Effect of framework si/al ratio on the adsorption mechanism of co2 on small-pore zeolites: Ii. merlinoite. Chem. Eng. J. 446, 137100 (2022) Choi, H.J., Jo, D., Hong, S.B.: Effect of framework si/al ratio on the adsorption mechanism of co2 on small-pore zeolites: Ii. merlinoite. Chem. Eng. J. 446, 137100 (2022)
4.
go back to reference Choudhary, K., DeCost, B.: Atomistic line graph neural network for improved materials property predictions. npj Computational Materials 7(1), 185 (2021) Choudhary, K., DeCost, B.: Atomistic line graph neural network for improved materials property predictions. npj Computational Materials 7(1), 185 (2021)
5.
go back to reference Choudhary, K., et al.: Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8(1), 59 (2022) Choudhary, K., et al.: Recent advances and applications of deep learning methods in materials science. npj Comput. Mater. 8(1), 59 (2022)
6.
go back to reference Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: Raspa: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42(2), 81–101 (2016)CrossRef Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: Raspa: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42(2), 81–101 (2016)CrossRef
7.
go back to reference Dubbeldam, D., Calero, S., Vlugt, T.J.: iraspa: Gpu-accelerated visualization software for materials scientists. Mol. Simul. 44(8), 653–676 (2018)CrossRef Dubbeldam, D., Calero, S., Vlugt, T.J.: iraspa: Gpu-accelerated visualization software for materials scientists. Mol. Simul. 44(8), 653–676 (2018)CrossRef
9.
go back to reference Garcia-Sanchez, A., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J., Krishna, R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113(20), 8814–8820 (2009)CrossRef Garcia-Sanchez, A., Ania, C.O., Parra, J.B., Dubbeldam, D., Vlugt, T.J., Krishna, R., Calero, S.: Transferable force field for carbon dioxide adsorption in zeolites. J. Phys. Chem. C 113(20), 8814–8820 (2009)CrossRef
10.
go back to reference Gasteiger, J., Giri, S., Margraf, J.T., Günnemann, S.: Fast and uncertainty-aware directional message passing for non-equilibrium molecules. In: Machine Learning for Molecules Workshop, NeurIPS (2020) Gasteiger, J., Giri, S., Margraf, J.T., Günnemann, S.: Fast and uncertainty-aware directional message passing for non-equilibrium molecules. In: Machine Learning for Molecules Workshop, NeurIPS (2020)
11.
go back to reference Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular graphs. In: International Conference on Learning Representations (2020) Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular graphs. In: International Conference on Learning Representations (2020)
12.
go back to reference Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017) Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: International Conference on Machine Learning, pp. 1263–1272. PMLR (2017)
13.
go back to reference Harris, J.G., Yung, K.H.: Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99(31), 12021–12024 (1995)CrossRef Harris, J.G., Yung, K.H.: Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. J. Phys. Chem. 99(31), 12021–12024 (1995)CrossRef
14.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
15.
go back to reference Jablonka, K.M., Ongari, D., Moosavi, S.M., Smit, B.: Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120(16), 8066–8129 (2020)CrossRef Jablonka, K.M., Ongari, D., Moosavi, S.M., Smit, B.: Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120(16), 8066–8129 (2020)CrossRef
16.
go back to reference Kaba, S.O., Ravanbakhsh, S.: Equivariant networks for crystal structures. In: Advances in Neural Information Processing Systems (2022) Kaba, S.O., Ravanbakhsh, S.: Equivariant networks for crystal structures. In: Advances in Neural Information Processing Systems (2022)
17.
go back to reference Khaleque, A., et al.: Zeolite synthesis from low-cost materials and environmental applications: a review. Environ. Adv. 2, 100019 (2020)CrossRef Khaleque, A., et al.: Zeolite synthesis from low-cost materials and environmental applications: a review. Environ. Adv. 2, 100019 (2020)CrossRef
19.
go back to reference Moradi, H., Azizpour, H., Bahmanyar, H., Rezamandi, N., Zahedi, P.: Effect of si/al ratio in the faujasite structure on adsorption of methane and nitrogen: a molecular dynamics study. Chem. Eng. Technol. 44(7), 1221–1226 (2021)CrossRef Moradi, H., Azizpour, H., Bahmanyar, H., Rezamandi, N., Zahedi, P.: Effect of si/al ratio in the faujasite structure on adsorption of methane and nitrogen: a molecular dynamics study. Chem. Eng. Technol. 44(7), 1221–1226 (2021)CrossRef
20.
go back to reference Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32 (2019) Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems 32 (2019)
21.
go back to reference Ravanbakhsh, S., Schneider, J., Poczos, B.: Equivariance through parameter-sharing. In: International Conference on Machine Learning, pp. 2892–2901. PMLR (2017) Ravanbakhsh, S., Schneider, J., Poczos, B.: Equivariance through parameter-sharing. In: International Conference on Machine Learning, pp. 2892–2901. PMLR (2017)
22.
go back to reference Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C., Shao, C., Metni, H., van Hoesel, C., Schopmans, H., Sommer, T., et al.: Graph neural networks for materials science and chemistry. Commun. Mater. 3(1), 93 (2022)CrossRef Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou, C., Shao, C., Metni, H., van Hoesel, C., Schopmans, H., Sommer, T., et al.: Graph neural networks for materials science and chemistry. Commun. Mater. 3(1), 93 (2022)CrossRef
23.
go back to reference Romero-Marimon, P., Gutiérrez-Sevillano, J.J., Calero, S.: Adsorption of carbon dioxide in non-löwenstein zeolites. Chemistry of Materials (2023) Romero-Marimon, P., Gutiérrez-Sevillano, J.J., Calero, S.: Adsorption of carbon dioxide in non-löwenstein zeolites. Chemistry of Materials (2023)
24.
go back to reference Schütt, K., Kindermans, P.J., Sauceda Felix, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30 (2017) Schütt, K., Kindermans, P.J., Sauceda Felix, H.E., Chmiela, S., Tkatchenko, A., Müller, K.R.: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in Neural Information Processing Systems 30 (2017)
26.
go back to reference Sneddon, G., Greenaway, A., Yiu, H.H.: The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Adv. Energy Mater. 4(10), 1301873 (2014)CrossRef Sneddon, G., Greenaway, A., Yiu, H.H.: The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Adv. Energy Mater. 4(10), 1301873 (2014)CrossRef
27.
go back to reference Stein, H.S., Gregoire, J.M.: Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci. 10(42), 9640–9649 (2019)CrossRef Stein, H.S., Gregoire, J.M.: Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci. 10(42), 9640–9649 (2019)CrossRef
28.
go back to reference Wang, R., Zhong, Y., Bi, L., Yang, M., Xu, D.: Accelerating discovery of metal-organic frameworks for methane adsorption with hierarchical screening and deep learning. ACS Applied Materials & Interfaces 12(47), 52797–52807 (2020)CrossRef Wang, R., Zhong, Y., Bi, L., Yang, M., Xu, D.: Accelerating discovery of metal-organic frameworks for methane adsorption with hierarchical screening and deep learning. ACS Applied Materials & Interfaces 12(47), 52797–52807 (2020)CrossRef
29.
go back to reference Wang, R., Zou, Y., Zhang, C., Wang, X., Yang, M., Xu, D.: Combining crystal graphs and domain knowledge in machine learning to predict metal-organic frameworks performance in methane adsorption. Microporous Mesoporous Mater. 331, 111666 (2022)CrossRef Wang, R., Zou, Y., Zhang, C., Wang, X., Yang, M., Xu, D.: Combining crystal graphs and domain knowledge in machine learning to predict metal-organic frameworks performance in methane adsorption. Microporous Mesoporous Mater. 331, 111666 (2022)CrossRef
30.
go back to reference Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808–2812 (1963)CrossRef Widom, B.: Some topics in the theory of fluids. J. Chem. Phys. 39(11), 2808–2812 (1963)CrossRef
31.
go back to reference Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)CrossRef Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)CrossRef
32.
go back to reference Yan, K., Liu, Y., Lin, Y., Ji, S.: Periodic graph transformers for crystal material property prediction. Adv. Neural. Inf. Process. Syst. 35, 15066–15080 (2022) Yan, K., Liu, Y., Lin, Y., Ji, S.: Periodic graph transformers for crystal material property prediction. Adv. Neural. Inf. Process. Syst. 35, 15066–15080 (2022)
33.
go back to reference Yang, C.T., Janda, A., Bell, A.T., Lin, L.C.: Atomistic investigations of the effects of si/al ratio and al distribution on the adsorption selectivity of n-alkanes in brønsted-acid zeolites. The Journal of Physical Chemistry C 122(17), 9397–9410 (2018)CrossRef Yang, C.T., Janda, A., Bell, A.T., Lin, L.C.: Atomistic investigations of the effects of si/al ratio and al distribution on the adsorption selectivity of n-alkanes in brønsted-acid zeolites. The Journal of Physical Chemistry C 122(17), 9397–9410 (2018)CrossRef
34.
go back to reference Zhang, C., Xie, Y., Xie, C., Dong, H., Zhang, L., Lin, J.: Accelerated discovery of porous materials for carbon capture by machine learning: A review. MRS Bull. 47(4), 432–439 (2022)CrossRef Zhang, C., Xie, Y., Xie, C., Dong, H., Zhang, L., Lin, J.: Accelerated discovery of porous materials for carbon capture by machine learning: A review. MRS Bull. 47(4), 432–439 (2022)CrossRef
Metadata
Title
Equivariant Parameter Sharing for Porous Crystalline Materials
Authors
Marko Petković
Pablo Romero Marimon
Vlado Menkovski
Sofía Calero
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-58547-0_11

Premium Partner