Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 11/2019

30-08-2019

Estimation of the Temperature in the Stirred Zone and Cooling Rate of Friction Stir Welding of EH46 Steel from TiN Precipitates

Authors: Montadhar Al-moussawi, Alan J. Smith, Masoumeh Faraji, Stephen Cater

Published in: Metallurgical and Materials Transactions A | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Measuring the peak temperature in the contact region of the tool/workpiece in friction stir welding (FSW) is difficult using conventional methods such as use of thermocouples or a thermal imaging camera, hence an alternative method is required to tackle this problem. The objective of the present work was to estimate more accurately, for the first time, the peak temperature and cooling rate of FSW from precipitation of TiN in friction stir-welded steel samples. Microstructures of nine friction stir-welded samples of high-strength shipbuilding steel of EH46 grade were examined closely by SEM-EDS to detect the TiN precipitates. Thermal heat treatments using an accurate electrical digital furnace were also carried out on 80 unwelded EH46 steel samples over a range of temperatures and cooling rates. Heat treatments were to create a basis to understand TiN precipitation behavior under various heating and cooling regimes for the studied alloy. Heat treatment showed that TiN particles can precipitate at a peak temperature exceeding 1000 °C and the size of TiN precipitate particles increases with decreasing cooling rate. In a temperature range between 1100 °C and 1200 °C, the TiN precipitates were accompanied by other elements such as Nb, S, Al, and V. Pure TiN particles were found after the peak temperature exceeded 1250 °C with limited precipitation after reaching a peak temperature of 1450 °C. The comparison between the friction stir welding samples and the heat treatments in terms of types and sizes of TiN precipitates suggests that the welding peak temperature should have been in the range of 1200 °C and 1350 °C with a cooling rate in the range of 20 to 30 K/s. The current work represents a step change in estimating the friction stir welding temperature and cooling rate which are difficult to determine using thermocouples and thermal imaging camera.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Friction Stir Butt Welding, International Patent No. PCT/GB92/02203, 1991. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Friction Stir Butt Welding, International Patent No. PCT/GB92/02203, 1991.
2.
go back to reference S.A. Hussein, S. Thiru, R. Izamshah and A.S.M.D. Tahir: Advances in Mat. Sci. & Eng., 2014, 8 pages. S.A. Hussein, S. Thiru, R. Izamshah and A.S.M.D. Tahir: Advances in Mat. Sci. & Eng., 2014, 8 pages.
3.
go back to reference 3. P. Carlone and G.S. Palazzo: Metallogr. Microstruct. Anal., 2013, vol. 2, pp. 213-222.CrossRef 3. P. Carlone and G.S. Palazzo: Metallogr. Microstruct. Anal., 2013, vol. 2, pp. 213-222.CrossRef
4.
go back to reference 4. J. Mezyk and S. Kowieski: Solid State Phenomena, 2015, vol. 220-221, pp. 859-863.CrossRef 4. J. Mezyk and S. Kowieski: Solid State Phenomena, 2015, vol. 220-221, pp. 859-863.CrossRef
5.
go back to reference 5. Z.H. Zhang, W.Y. Li, J.L. Li and Y.J. Chao: Int. J. Adv. Manuf. Technol., 2014, vol. 73, pp. 1213-1218.CrossRef 5. Z.H. Zhang, W.Y. Li, J.L. Li and Y.J. Chao: Int. J. Adv. Manuf. Technol., 2014, vol. 73, pp. 1213-1218.CrossRef
6.
go back to reference 6. A. Arora, T. DebRoy and K.H.D.H. Bhadeshia: Acta Mater., 2011, vol. 59, pp. 2020-2028.CrossRef 6. A. Arora, T. DebRoy and K.H.D.H. Bhadeshia: Acta Mater., 2011, vol. 59, pp. 2020-2028.CrossRef
7.
go back to reference 7. L. Wang, C.M. Davies, R.C. Wimpory, L.Y. Xie and K.M. Nikbin: Materials at High Temperature, 2010, vol. 27, pp. 167-178.CrossRef 7. L. Wang, C.M. Davies, R.C. Wimpory, L.Y. Xie and K.M. Nikbin: Materials at High Temperature, 2010, vol. 27, pp. 167-178.CrossRef
8.
go back to reference J Stock, CM Enloe, RJ OMalley, KO Findley (2014) AIST Trans. 11:180-186. J Stock, CM Enloe, RJ OMalley, KO Findley (2014) AIST Trans. 11:180-186.
9.
go back to reference 9. M.T. Nagata, J.G. Speer and D.K. Matlock: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3099-3110.CrossRef 9. M.T. Nagata, J.G. Speer and D.K. Matlock: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3099-3110.CrossRef
10.
go back to reference KA El-Fawakhry, MF Mekkawy, ML Mishreky, MM Eissa (1991) ISIJ Int. 31: 1020-1025.CrossRef KA El-Fawakhry, MF Mekkawy, ML Mishreky, MM Eissa (1991) ISIJ Int. 31: 1020-1025.CrossRef
11.
go back to reference 11. M.L. Wang, G.G. Cheng, S.T. Qiu, P. Zhao, and Y. Gan: International Journal of Minerals, Metallurgy and Materials, 2010, vol.17, pp. 276-281.CrossRef 11. M.L. Wang, G.G. Cheng, S.T. Qiu, P. Zhao, and Y. Gan: International Journal of Minerals, Metallurgy and Materials, 2010, vol.17, pp. 276-281.CrossRef
12.
go back to reference 12. S.G. Hong, H.J Jun, K.B. Kang and C.G. Park: Scr. Mater., 2003, vol. 48, pp. 1201–1206.CrossRef 12. S.G. Hong, H.J Jun, K.B. Kang and C.G. Park: Scr. Mater., 2003, vol. 48, pp. 1201–1206.CrossRef
13.
go back to reference D.M. Failla: Friction Stir Welding and Microstructure Simulation of HSLA-65 and Austenitic Stainless Steels, MSc Thesis, The Ohio State University, 2009. D.M. Failla: Friction Stir Welding and Microstructure Simulation of HSLA-65 and Austenitic Stainless Steels, MSc Thesis, The Ohio State University, 2009.
14.
go back to reference 14. S.F. Medina, A. Quispe and M. Gomez: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1524–1539.CrossRef 14. S.F. Medina, A. Quispe and M. Gomez: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 1524–1539.CrossRef
16.
go back to reference 16. P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392-403.CrossRef 16. P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392-403.CrossRef
17.
go back to reference 17. L.J. Cuddy: “The Effect of Microalloy Concentration on the Recrystallization of Austenite During Hot Deformation”, In: A. J. DeArdo, G. A. Ratz, and P. J. Wray, eds. Thermomechanical processing of microalloyed austenite. Pittsburgh, USA: TMS-AIME, 1981: 129-140. 17. L.J. Cuddy: “The Effect of Microalloy Concentration on the Recrystallization of Austenite During Hot Deformation”, In: A. J. DeArdo, G. A. Ratz, and P. J. Wray, eds. Thermomechanical processing of microalloyed austenite. Pittsburgh, USA: TMS-AIME, 1981: 129-140.
18.
go back to reference 18. J. Fernández, S. Illescas and J.M. Guilemany: Mater. Letters, 2007, vol. 61, pp. 2389–2392.CrossRef 18. J. Fernández, S. Illescas and J.M. Guilemany: Mater. Letters, 2007, vol. 61, pp. 2389–2392.CrossRef
19.
go back to reference 19. A. Karmakar, S. Kundu, S. Roy, S. Neogy, D. Srivastava and D. Chakrabarti: Mater. Sci. Tech., 2014, vol. 30, pp. 653-664.CrossRef 19. A. Karmakar, S. Kundu, S. Roy, S. Neogy, D. Srivastava and D. Chakrabarti: Mater. Sci. Tech., 2014, vol. 30, pp. 653-664.CrossRef
20.
go back to reference 20. J. Kunze, C. Mickel, G. Backmann, B. Beyer, M. Reibold, C. Klinkenberg, Steel Research, 1997, vol. 68 (10), pp. 441-449.CrossRef 20. J. Kunze, C. Mickel, G. Backmann, B. Beyer, M. Reibold, C. Klinkenberg, Steel Research, 1997, vol. 68 (10), pp. 441-449.CrossRef
21.
go back to reference 21. T-P Qu, J. Tian, K-I Chen, Z Xu, D-Y Wang: Ironmaking & Steelmaking, 2019, vol. 46 (4), pp. 353-358.CrossRef 21. T-P Qu, J. Tian, K-I Chen, Z Xu, D-Y Wang: Ironmaking & Steelmaking, 2019, vol. 46 (4), pp. 353-358.CrossRef
22.
go back to reference 22. S.F. Di Martino and G. Thewlis: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 579-594.CrossRef 22. S.F. Di Martino and G. Thewlis: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 579-594.CrossRef
23.
go back to reference 23. A.J. DeArdo: International Materials Reviews, 2003, vol. 48, pp. 371–402.CrossRef 23. A.J. DeArdo: International Materials Reviews, 2003, vol. 48, pp. 371–402.CrossRef
24.
go back to reference G Stein, W Kirschner, J Lueng (1997) Application of nitrogen-alloyed martensitic stainless steels in the aviation industry. In: E.G. Nisbett and A.S. Melilli (eds) Steel Forgings: Second Volume. ASTM Special Technical Publication, Warrendale, PA, pp. 104-115.CrossRef G Stein, W Kirschner, J Lueng (1997) Application of nitrogen-alloyed martensitic stainless steels in the aviation industry. In: E.G. Nisbett and A.S. Melilli (eds) Steel Forgings: Second Volume. ASTM Special Technical Publication, Warrendale, PA, pp. 104-115.CrossRef
25.
go back to reference 25. T. Shiraiwa and N. Fujino, “Electron Probe Microanalysis of Ti(C, N) and Zr(C, N) in Steel”, 1969, In: Möllenstedt G., Gaukler K.H. (eds) Vth International Congress on X-Ray Optics and Microanalysis, Springer, Berlin, Heidelberg, pp 531-534. 25. T. Shiraiwa and N. Fujino, “Electron Probe Microanalysis of Ti(C, N) and Zr(C, N) in Steel”, 1969, In: Möllenstedt G., Gaukler K.H. (eds) Vth International Congress on X-Ray Optics and Microanalysis, Springer, Berlin, Heidelberg, pp 531-534.
26.
go back to reference 26. M. Hua, C.I. Garcia, and A.J. DeArdo: Metall. Mat. Trans. A, 1997, vol. 28A, pp. 1769-80.CrossRef 26. M. Hua, C.I. Garcia, and A.J. DeArdo: Metall. Mat. Trans. A, 1997, vol. 28A, pp. 1769-80.CrossRef
27.
go back to reference 27. H. Schmidt and J. Hattel: Modelling and Simulation in Materials Science and Engineering, 2005, vol. 13, pp.77–93.CrossRef 27. H. Schmidt and J. Hattel: Modelling and Simulation in Materials Science and Engineering, 2005, vol. 13, pp.77–93.CrossRef
28.
go back to reference 28. H.B. Schmidt and J.H. Hattel: Scri. Mater., 2008, vol. 58, pp.332–337.CrossRef 28. H.B. Schmidt and J.H. Hattel: Scri. Mater., 2008, vol. 58, pp.332–337.CrossRef
29.
go back to reference 29. P.A. Colegrove, H.R. Shercliff and R. Zettler: Science and Technology of Welding and Joining, 2007, vol. 12, pp. 284-297.CrossRef 29. P.A. Colegrove, H.R. Shercliff and R. Zettler: Science and Technology of Welding and Joining, 2007, vol. 12, pp. 284-297.CrossRef
30.
go back to reference R.K. Gibbs, R.C. Peterson, and B.A. Parker: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, Iron and Steel Society, Warrendale, PA, 1992, pp. 201–07. R.K. Gibbs, R.C. Peterson, and B.A. Parker: Proc. Int. Conf. on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels, Iron and Steel Society, Warrendale, PA, 1992, pp. 201–07.
31.
go back to reference 31. S. Matsuda and K. Okumura: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 198. 31. S. Matsuda and K. Okumura: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, p. 198.
Metadata
Title
Estimation of the Temperature in the Stirred Zone and Cooling Rate of Friction Stir Welding of EH46 Steel from TiN Precipitates
Authors
Montadhar Al-moussawi
Alan J. Smith
Masoumeh Faraji
Stephen Cater
Publication date
30-08-2019
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 11/2019
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05383-x

Other articles of this Issue 11/2019

Metallurgical and Materials Transactions A 11/2019 Go to the issue

Premium Partners