Skip to main content
Top

2020 | OriginalPaper | Chapter

7. Eulerian Flow-Oscillator Models

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We apply the Eulerian formulations of the last chapter to derive a general variational formulation of a flow-oscillator modeling framework. A brief review of the application of variational principles to fluid–structure interactions is given. A summary is provided of Jourdain’s principle for fluid systems. Boundary conditions are discussed, in particular the no-slip condition and its interpretations. The control volume is expanded upon. Fluid–structure interaction is then modeled in two ways: (i) as a single governing equation of motion for a translating cylinder and for an inverted pendulum, and (ii) as coupled equations of motion utilizing the concept of a wake oscillator. For the wake oscillator, the no-slip condition is further examined and implemented. Experimental data is used to derive a more specific reduced-order model that can be compared with some of the models found in the literature: McIver, Benaroya and Wei, and Hartlen and Currie. A primary conclusion is that the derived framework is an excellent basis for the development of flow-oscillator models, where assumptions are explicitly identified.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barrat J-L, Bocquet L (1999) Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss 112:119–128CrossRef Barrat J-L, Bocquet L (1999) Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss 112:119–128CrossRef
2.
go back to reference Bearman PW (1984) Vortex shedding from oscillating bluff bodies. Annu Rev Fluid Mech 16:195–222CrossRef Bearman PW (1984) Vortex shedding from oscillating bluff bodies. Annu Rev Fluid Mech 16:195–222CrossRef
3.
go back to reference Benaroya H, Wei T (2000) Hamilton’s principle for external viscous fluid structure interactions. J Sound Vib 238(1):113–145CrossRef Benaroya H, Wei T (2000) Hamilton’s principle for external viscous fluid structure interactions. J Sound Vib 238(1):113–145CrossRef
4.
go back to reference De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid-structure interaction model of the aortic value. J Biomech 33(9):1079–1088CrossRef De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid-structure interaction model of the aortic value. J Biomech 33(9):1079–1088CrossRef
5.
go back to reference Dong P, Benaroya H, Wei T (2004) Integrating experiments into an energy-based reduced-order model for vortex-induced-vibrations of a cylinder mounted as an inverted pendulum. J Sound Vib 276(1–2):45–63CrossRef Dong P, Benaroya H, Wei T (2004) Integrating experiments into an energy-based reduced-order model for vortex-induced-vibrations of a cylinder mounted as an inverted pendulum. J Sound Vib 276(1–2):45–63CrossRef
6.
go back to reference Gabbai RD (2006) Hamilton’s principle for fluid-structure interaction and applications to the free-vibration of an elastically-mounted cylinder. PhD dissertation, Rutgers, the State University of New Jersey, New Brunswick, NJ Gabbai RD (2006) Hamilton’s principle for fluid-structure interaction and applications to the free-vibration of an elastically-mounted cylinder. PhD dissertation, Rutgers, the State University of New Jersey, New Brunswick, NJ
7.
go back to reference Gabbai RD, Benaroya H (2005) An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J Sound Vib 282:575–616CrossRef Gabbai RD, Benaroya H (2005) An overview of modeling and experiments of vortex-induced vibration of circular cylinders. J Sound Vib 282:575–616CrossRef
8.
go back to reference Gabbai RD, Benaroya H (2008) A first-principles derivation procedure for wake-body models in vortex-induced vibration: proof-of-concept. J Sound Vib 312:19–38CrossRef Gabbai RD, Benaroya H (2008) A first-principles derivation procedure for wake-body models in vortex-induced vibration: proof-of-concept. J Sound Vib 312:19–38CrossRef
10.
go back to reference Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366CrossRef Goldstein D, Handler R, Sirovich L (1993) Modeling a no-slip flow boundary with an external force field. J Comput Phys 105(2):354–366CrossRef
11.
go back to reference Hartlen RT, Currie IG (1970) Lift-oscillator model of vortex induced vibration. J Eng Mech 96(5):577–591 Hartlen RT, Currie IG (1970) Lift-oscillator model of vortex induced vibration. J Eng Mech 96(5):577–591
12.
go back to reference Hocking LM (1976) A moving fluid interface on a rough surface. J Fluid Mech 76(04):801–817CrossRef Hocking LM (1976) A moving fluid interface on a rough surface. J Fluid Mech 76(04):801–817CrossRef
13.
go back to reference Kundu PK, Cohen IM (2008) Fluid mechanics, 4th edn. Elsevier Inc., Oxford Kundu PK, Cohen IM (2008) Fluid mechanics, 4th edn. Elsevier Inc., Oxford
14.
go back to reference Lamb H (1963) Hydrodynamics. Cambridge University Press, CambridgeMATH Lamb H (1963) Hydrodynamics. Cambridge University Press, CambridgeMATH
15.
go back to reference Lanczos C (1970) The variational principles of mechanics, 4th edn. Courier Dover Publications, New YorkMATH Lanczos C (1970) The variational principles of mechanics, 4th edn. Courier Dover Publications, New YorkMATH
16.
go back to reference Layton W (1999) Weak imposition of “no-slip” conditions in finite element methods. Comput Math Appl 38:129–142MathSciNetCrossRef Layton W (1999) Weak imposition of “no-slip” conditions in finite element methods. Comput Math Appl 38:129–142MathSciNetCrossRef
17.
go back to reference McIver DB (1973) Hamilton’s principle for systems of changing mass. J Eng Mech 7(3):249–261MATH McIver DB (1973) Hamilton’s principle for systems of changing mass. J Eng Mech 7(3):249–261MATH
18.
go back to reference Millikan CB (1929) On the steady motion of viscous, incompressible fluids; with particular reference to a variation principle. Philos Mag Ser 7, 7(44):641–662 Millikan CB (1929) On the steady motion of viscous, incompressible fluids; with particular reference to a variation principle. Philos Mag Ser 7, 7(44):641–662
19.
go back to reference Mottaghi S (2015) Modeling vortex-induced fluid-structure interaction using an extension of Jourdain’s principle. PhD dissertation, Rutgers, the State University of New Jersey, New Brunswick, NJ Mottaghi S (2015) Modeling vortex-induced fluid-structure interaction using an extension of Jourdain’s principle. PhD dissertation, Rutgers, the State University of New Jersey, New Brunswick, NJ
20.
go back to reference Pit R, Hervet H, Leger L (1999) Friction and slip of a simple liquid at a solid surface. Tribol Lett 7(2–3):147–152CrossRef Pit R, Hervet H, Leger L (1999) Friction and slip of a simple liquid at a solid surface. Tribol Lett 7(2–3):147–152CrossRef
21.
go back to reference Sarpkaya T (2004) A critical review of the intrinsic nature of vortex-induced vibrations. J Fluids Struct 19(4):389–447CrossRef Sarpkaya T (2004) A critical review of the intrinsic nature of vortex-induced vibrations. J Fluids Struct 19(4):389–447CrossRef
22.
go back to reference Tropea C, Yarin AL, Foss JF (eds) (2007) Springer Handbook of Experimental Fluid Mechanics, vol 1. Springer, Berlin Tropea C, Yarin AL, Foss JF (eds) (2007) Springer Handbook of Experimental Fluid Mechanics, vol 1. Springer, Berlin
23.
go back to reference van Loon R, Anderson PD, van de Vosse FN (2006) A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2):806–823MathSciNetCrossRef van Loon R, Anderson PD, van de Vosse FN (2006) A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2):806–823MathSciNetCrossRef
24.
go back to reference Xing JT, Price WG (2000) The theory of non-linear elastic ship-water interaction dynamics. J Sound Vib 230(4):877–914CrossRef Xing JT, Price WG (2000) The theory of non-linear elastic ship-water interaction dynamics. J Sound Vib 230(4):877–914CrossRef
25.
go back to reference Zhu Y, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88:106102CrossRef Zhu Y, Granick S (2002) Limits of the hydrodynamic no-slip boundary condition. Phys Rev Lett 88:106102CrossRef
Metadata
Title
Eulerian Flow-Oscillator Models
Authors
Sohrob Mottaghi
Rene Gabbai
Haym Benaroya
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-26133-7_7

Premium Partners