Skip to main content
Top

2019 | OriginalPaper | Chapter

Evaluation of Additively Manufactured Materials for Nuclear Plant Components

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Powder bed fusion Direct Metal Laser Melting (DMLM) is an evolving additive manufacturing (AM) fabrication technology that is providing high performance parts to many industries. This technology has significant promise for use in building components for nuclear power plants. Implementation of materials produced using this and similar processes offer a potential step change in efficiency for complex parts production and hence a potential for innovative design as well as cost savings for components in the future. Properties of AM Type 316L have been reported in previous work, showing properties that match wrought properties. The fine grain structure may even lead to better environmental resistance. However, there is a need to confirm the behavior of these innovative materials after exposure to radiation if this innovative technology is to be used in current and future nuclear applications. This paper discusses new efforts being explored via a joint program between GE Hitachi (GEH) and INL (Idaho National laboratory) aimed at developing corresponding un-irradiated and irradiated data for AM materials. This paper will present data for both Type 316L stainless steel, a single-phase alloy, and Ni-base Alloy 718, a precipitation hardened alloy, manufactured using AM. This paper, serving as a progress report, will present the mechanical property and microstructural data for both Type 316L and 718 AM alloys to assess their correspondence to wrought alloy data and establish a baseline for future comparison to irradiated properties. The paper will end by discussing the requirements for using these and other additively manufactured materials in future reactor component applications where irradiated data is not available.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Note: In all figures, horizontal and vertical designations refer to the sample build orientation.
 
Literature
1.
go back to reference X. Lou, E.J. Dolley, M.M. Morra, F.T. Bolger, M.L. Connor, R.M. Horn, in Stress Corrosion Cracking of the 316L Stainless Steel by Additive Manufacturing in High Temperature Water. 17th Environmental Degradation, Ottawa, CN Aug 2015 X. Lou, E.J. Dolley, M.M. Morra, F.T. Bolger, M.L. Connor, R.M. Horn, in Stress Corrosion Cracking of the 316L Stainless Steel by Additive Manufacturing in High Temperature Water. 17th Environmental Degradation, Ottawa, CN Aug 2015
2.
go back to reference C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, A. Sisto, Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400W. Int. J. Adv. Manuf. Technol. 74(1–4), 65–78 (2014)CrossRef C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, A. Sisto, Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400W. Int. J. Adv. Manuf. Technol. 74(1–4), 65–78 (2014)CrossRef
3.
go back to reference A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall. Mater. Trans. A 45A, 6260 (2014)CrossRef A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall. Mater. Trans. A 45A, 6260 (2014)CrossRef
4.
go back to reference P.L. Andresen, in Irradiation Assisted Stress Corrosion Cracking, ed. by R.H. Jones. Book on Stress Corrosion Cracking: Materials Performance and Evaluation (ASM, Materials Park, 1992), pp. 181–210 P.L. Andresen, in Irradiation Assisted Stress Corrosion Cracking, ed. by R.H. Jones. Book on Stress Corrosion Cracking: Materials Performance and Evaluation (ASM, Materials Park, 1992), pp. 181–210
5.
go back to reference P.G. Tipping, P.L. Andresen, in Stress Corrosion Cracking (SCC) of Austenitic Stainless Steels in High Temperature Light Water Reactor (LWR) Environments (Chapter 9). Understanding and Mitigating Ageing in Nuclear Power Plants-Materials and Operational Aspects of Plant Life Management (PLiM) (Woodhead Publishing, 2010) P.G. Tipping, P.L. Andresen, in Stress Corrosion Cracking (SCC) of Austenitic Stainless Steels in High Temperature Light Water Reactor (LWR) Environments (Chapter 9). Understanding and Mitigating Ageing in Nuclear Power Plants-Materials and Operational Aspects of Plant Life Management (PLiM) (Woodhead Publishing, 2010)
6.
go back to reference ASME Code Case N-60-6, Material for Core Support Structures, Section III, Division 1, 6 Dec 2011 ASME Code Case N-60-6, Material for Core Support Structures, Section III, Division 1, 6 Dec 2011
Metadata
Title
Evaluation of Additively Manufactured Materials for Nuclear Plant Components
Authors
R. M. Horn
M. Connor
D. Webber
J. Jackson
F. Bolger
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-04639-2_63

Premium Partners