Skip to main content
Top

2010 | OriginalPaper | Chapter

7. Evaluation of Proton Transfer in DNA Constituents: Development and Application of Ab Initio Based Reaction Kinetics

Authors : Dmytro Kosenkov, Yana Kholod, Leonid Gorb, Jerzy Leszczynski

Published in: Kinetics and Dynamics

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The kinetics of chemical reactions characterizes the rates of chemical processes, i.e. distribution of all reactants, intermediates and products over time. This information is of vital importance for all areas of chemistry: chemical technology to control organic or inorganic syntheses, chemical construction of nanomaterials, as well as for the investigation of biochemical processes. The chemical kinetics data provide a possibility to investigate the effect of different chemical, physical and environmental factors on the rate of a reaction, final products and by-products distribution, and even the direction of a chemical process. In the first part of the chapter the general introduction to the kinetics of chemical reactions is given. The classical kinetics of chemical reactions uses the outcome from experimental measurement of reaction rates. However, currently available reliable computational ab initio methods provide an alternative efficient way for estimation of the rate constants even for stepwise and multidirectional reactions. Another benefit of the computational investigations is the possibility to simulate a wide range of processes with duration from picoseconds to hours, days, or even for much longer time scales. Contemporary ab initio methods have been used for estimation and prediction of reaction rates for a number of different chemical reactions. Until recently most of the theoretical studies on kinetic parameters have not been extended beyond the calculations of the rate constants of chemical reactions. In the present review we describe the simulation of the chemical kinetics of proton transfer (tautomerization) in nucleic acid bases and their complexes with metal ions, also in the presence of water molecules. The considered models are based on the ab initio calculated rate constants of chemical reactions. Then, such predicted rate constants are used for further kinetic simulations. Biological consequences of investigated processes are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Hartree DR (1961) Calculation of atomic structure. Wiley, New York Hartree DR (1961) Calculation of atomic structure. Wiley, New York
5.
go back to reference Sponer J, Leszczynski J, Hobza P (2001) J Mol Struct – THEOCHEM 573:43–53CrossRef Sponer J, Leszczynski J, Hobza P (2001) J Mol Struct – THEOCHEM 573:43–53CrossRef
6.
go back to reference Nowek A, Sims R, Babinec P, Leszczynski J (1998) J Phys Chem A 102:2189–2193CrossRef Nowek A, Sims R, Babinec P, Leszczynski J (1998) J Phys Chem A 102:2189–2193CrossRef
8.
go back to reference Kuhne TD, Krack M, Mohamed FR, Parrinello M (2007) Phys Rev Lett 98:066401–04CrossRef Kuhne TD, Krack M, Mohamed FR, Parrinello M (2007) Phys Rev Lett 98:066401–04CrossRef
9.
12.
14.
go back to reference Barbatti M, Ruckenbauer M, Szymczak JJ, Aquino AJA, Lischka H (2008) Phys Chem Chem Phys 10:482–494CrossRef Barbatti M, Ruckenbauer M, Szymczak JJ, Aquino AJA, Lischka H (2008) Phys Chem Chem Phys 10:482–494CrossRef
15.
16.
go back to reference Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr.JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill P, MW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. (2004) Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr.JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill P, MW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. (2004) Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT.
17.
go back to reference Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry, the first forty years. Amsterdam, Elsevier Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry, the first forty years. Amsterdam, Elsevier
18.
go back to reference Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14:1347–1363CrossRef Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comp Chem 14:1347–1363CrossRef
19.
go back to reference McQuarrie DA (2000) Statistical mechanics, 2nd edn. University Science Books, Sausalito, CA McQuarrie DA (2000) Statistical mechanics, 2nd edn. University Science Books, Sausalito, CA
20.
go back to reference McQuarrie DA, Simon JD (1997) Physical chemistry: a molecular approach. University Science Books, Sausalito, CA McQuarrie DA, Simon JD (1997) Physical chemistry: a molecular approach. University Science Books, Sausalito, CA
21.
go back to reference Henriksen NE, Hansen FY (2008) Theories of molecular reaction dynamics: the microscopic foundation of chemical kinetics, 1st edn. Oxford, Oxford University PressCrossRef Henriksen NE, Hansen FY (2008) Theories of molecular reaction dynamics: the microscopic foundation of chemical kinetics, 1st edn. Oxford, Oxford University PressCrossRef
22.
go back to reference Smedarchina Z, Siebrand W, Fernandez-Ramos A, Gorb L, Leszczynski J (2000) J Chem Phys 112:566–573CrossRef Smedarchina Z, Siebrand W, Fernandez-Ramos A, Gorb L, Leszczynski J (2000) J Chem Phys 112:566–573CrossRef
23.
go back to reference Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C. Cambridge University Press, Cambridge, UK Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988) Numerical recipes in C. Cambridge University Press, Cambridge, UK
24.
go back to reference Kosenkov D, Kholod Y, Gorb L, Shishkin O, Hovorun D, Mons M, Leszczynski J (2009) Phys Chem B 113:6140–6150CrossRef Kosenkov D, Kholod Y, Gorb L, Shishkin O, Hovorun D, Mons M, Leszczynski J (2009) Phys Chem B 113:6140–6150CrossRef
25.
go back to reference Gorb L, Kaczmarek A, Gorb A, Sadlej AJ, Leszczynski J (2005) J Phys Chem B 109:13770–13776CrossRef Gorb L, Kaczmarek A, Gorb A, Sadlej AJ, Leszczynski J (2005) J Phys Chem B 109:13770–13776CrossRef
26.
go back to reference Michalkova A, Kosenkov D, Gorb L, Leszczynski J (2008) Phys Chem B 112:8624–8633CrossRef Michalkova A, Kosenkov D, Gorb L, Leszczynski J (2008) Phys Chem B 112:8624–8633CrossRef
27.
go back to reference Kosenkov D, Gorb L, Shishkin OV, Sponer J, Leszczynski J (2008) J Phys Chem B 112:150–157CrossRef Kosenkov D, Gorb L, Shishkin OV, Sponer J, Leszczynski J (2008) J Phys Chem B 112:150–157CrossRef
28.
29.
go back to reference Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J (2004) J Am Chem Soc 126:10119–10129CrossRef Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J (2004) J Am Chem Soc 126:10119–10129CrossRef
30.
go back to reference Saenger W (1984) Principles of nucleic acid structure. Springer-Verlag, New YorkCrossRef Saenger W (1984) Principles of nucleic acid structure. Springer-Verlag, New YorkCrossRef
31.
go back to reference Neidle S (1994) DNA structure and recognition. Oxford University press, Oxford Neidle S (1994) DNA structure and recognition. Oxford University press, Oxford
33.
go back to reference Rivas L, Sanchez-Cortes S, Garcia-Ramos JV (2002) Phys Chem Chem Phys 4:1943–1948CrossRef Rivas L, Sanchez-Cortes S, Garcia-Ramos JV (2002) Phys Chem Chem Phys 4:1943–1948CrossRef
34.
36.
go back to reference Sugawara Y, Nakamura A, Iimura Y, Kobayashi K, Urabe H (2002) Phys Chem B 106:10363–10368 Sugawara Y, Nakamura A, Iimura Y, Kobayashi K, Urabe H (2002) Phys Chem B 106:10363–10368
37.
go back to reference Jardetsky O, Roberts GC (1981) NMR in molecular biology. Academic, New York Jardetsky O, Roberts GC (1981) NMR in molecular biology. Academic, New York
38.
go back to reference Shishkin OV, Gorb L, Zhikol OA, Leszczynski J (2004) J Biomol Struct Dyn 22:227–243CrossRef Shishkin OV, Gorb L, Zhikol OA, Leszczynski J (2004) J Biomol Struct Dyn 22:227–243CrossRef
40.
go back to reference Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) J Phys Chem A 106:5088–5094CrossRef Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) J Phys Chem A 106:5088–5094CrossRef
41.
go back to reference Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Chem Phys 270:205–214CrossRef Piuzzi F, Mons M, Dimicoli I, Tardivel B, Zhao Q (2001) Chem Phys 270:205–214CrossRef
44.
go back to reference Szczesniak M, Szczepaniak K, Kwiatkowski JS, KuBulat K, Person WB (1988) J Am Chem Soc 110:8319–8330CrossRef Szczesniak M, Szczepaniak K, Kwiatkowski JS, KuBulat K, Person WB (1988) J Am Chem Soc 110:8319–8330CrossRef
45.
go back to reference Sheina GG, Stepanian SG, Radchenko ED, Blagoi YuP (1987) J Mol Struct 158:275–292CrossRef Sheina GG, Stepanian SG, Radchenko ED, Blagoi YuP (1987) J Mol Struct 158:275–292CrossRef
46.
48.
49.
go back to reference Nir E, Hunig I, Kleinermanns K, de Vries MS (2003) Phys Chem Chem Phys 21:4780–4785CrossRef Nir E, Hunig I, Kleinermanns K, de Vries MS (2003) Phys Chem Chem Phys 21:4780–4785CrossRef
50.
go back to reference Nir E, Hunig I, Kleinermanns K, de Vries MS (2002) Eur Phys J D 20:317–329CrossRef Nir E, Hunig I, Kleinermanns K, de Vries MS (2002) Eur Phys J D 20:317–329CrossRef
51.
go back to reference Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) J Phys Chem A 110:10921–10924CrossRef Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) J Phys Chem A 110:10921–10924CrossRef
54.
56.
go back to reference Sigel A, Sigel H (1996) Metal ions in biological systems. Marcel Dekker, New York Sigel A, Sigel H (1996) Metal ions in biological systems. Marcel Dekker, New York
57.
go back to reference Sigel A, Sigel H (1996) Probing of nucleic acids by metal ion complexes of small molecules. Marcel Dekker, New York Sigel A, Sigel H (1996) Probing of nucleic acids by metal ion complexes of small molecules. Marcel Dekker, New York
58.
go back to reference Lippard SJ, Berg JM (1994) Principle of bioinorganic chemistry. University Science Books, Mill Valley, CA Lippard SJ, Berg JM (1994) Principle of bioinorganic chemistry. University Science Books, Mill Valley, CA
59.
go back to reference Kaim W, Schwedersky B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, Chichester Kaim W, Schwedersky B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, Chichester
60.
go back to reference Loeb LA, Zakour AR (1980) In: Spiro TG (ed) Nucleic acid-metal ion interactions. New York, Wiley Loeb LA, Zakour AR (1980) In: Spiro TG (ed) Nucleic acid-metal ion interactions. New York, Wiley
62.
Metadata
Title
Evaluation of Proton Transfer in DNA Constituents: Development and Application of Ab Initio Based Reaction Kinetics
Authors
Dmytro Kosenkov
Yana Kholod
Leonid Gorb
Jerzy Leszczynski
Copyright Year
2010
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-90-481-3034-4_7

Premium Partner