Skip to main content
Top
Published in: Mitigation and Adaptation Strategies for Global Change 2/2020

15-05-2019 | Original Article

Evapotranspiration in North America: implications for water resources in a changing climate

Authors: Yang Qu, Qianlai Zhuang

Published in: Mitigation and Adaptation Strategies for Global Change | Issue 2/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Accurate quantification of evapotranspiration (ET) is important to understanding its role in the global hydrological cycle of terrestrial ecosystems and feedbacks to the climate system. This study improves ET quantification in North America using a data assimilation technique and a process-based Terrestrial Ecosystem Model as well as in situ and satellite data. ET is modeled using the Penman-Monteith equation with an improved leaf area index (LAI) algorithm in a biogeochemistry model, the Terrestrial Ecosystem Model (TEM). The evaluated TEM was used to estimate ET at site and regional scales in North America from 2000 to 2010. The estimated annual ET varies from 420 to 450 mm year−1 with the improved model, close to Moderate Resolution Imaging Spectroradiometer monthly data with a root-mean-square error less than 10 mm month−1 for the study period. Alaska, Canada, and the conterminous US account for 33%, 6%, and 61% of the regional ET, respectively. Water availability, the difference between precipitation and ET, is 181 mm month−1, averaged from 2000 to 2010. Under IPCC Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 scenarios, the regional ET increases by 11% and 24%, respectively. Consequently, the water availability decreases in the region by 2.4% and 23.7%, respectively. For the period of 2020–2100, due to uncertain parameters, TEM versions integrated with three different ET algorithms estimated that the regional ET in the USA are 430.5 ± 10.5 mm year−1, 482.1 ± 11.2 mm year−1, and 489.7 ± 13.4 mm year−1, and the available water is − 105.3 ± 8.7 mm year−1, − 20.3 ± 11.9 mm year−1, and − 126.2 ± 15.4 mm year−1, respectively, by the end of the twenty-first century. Our analysis suggests natural terrestrial ecosystem soils in North America will get drier under future climate conditions, which will impact the regional water resource and the climate system. Based on our ET simulation under three climate change scenarios, our study suggests that the RCP 2.6 is the optimum trajectory for preserving freshwater resources in North America and other regions in the globe.
Literature
go back to reference Allen RG (2000) Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J Hydrol 229(1):27–41CrossRef Allen RG (2000) Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J Hydrol 229(1):27–41CrossRef
go back to reference Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Rome 300(9) Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56. FAO, Rome 300(9)
go back to reference Allen RG, Tasumi M, Morse A, Trezza R (2005) A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig Drain Syst 19(3–4):251–268CrossRef Allen RG, Tasumi M, Morse A, Trezza R (2005) A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig Drain Syst 19(3–4):251–268CrossRef
go back to reference Asrar G, Myneni RB, Li Y, Kanemasu ET (1989) Measuring and modeling spectral characteristics of a tallgrass prairie. Remote Sens Environ 27(2):143–155CrossRef Asrar G, Myneni RB, Li Y, Kanemasu ET (1989) Measuring and modeling spectral characteristics of a tallgrass prairie. Remote Sens Environ 27(2):143–155CrossRef
go back to reference Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2):161–173CrossRef Baret F, Guyot G (1991) Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens Environ 35(2):161–173CrossRef
go back to reference Betts AK, Ball JH, Beljaars A, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res Atmos 101(D3):7209–7225CrossRef Betts AK, Ball JH, Beljaars A, Miller MJ, Viterbo PA (1996) The land surface-atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res Atmos 101(D3):7209–7225CrossRef
go back to reference Biederman JA, Scott RL, Goulden ML, Vargas R, Litvak ME, Kolb TE et al (2016) Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob Chang Biol 22(5):1867–1879CrossRef Biederman JA, Scott RL, Goulden ML, Vargas R, Litvak ME, Kolb TE et al (2016) Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob Chang Biol 22(5):1867–1879CrossRef
go back to reference Chapin FS, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Chang Biol 6(S1):211–223CrossRef Chapin FS, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE, Roulet N, Eugster W, Kasischke E, Rastetter EB, Zimov SA, Running SW (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Chang Biol 6(S1):211–223CrossRef
go back to reference Chen M, Zhuang Q, Cook DR, Coulter R, Pekour M, Scott RL, Munger JW, Bible K (2011) Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosciences 8(2):2721–2773CrossRef Chen M, Zhuang Q, Cook DR, Coulter R, Pekour M, Scott RL, Munger JW, Bible K (2011) Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosciences 8(2):2721–2773CrossRef
go back to reference Dolman AJ, De Jeu RAM (2010) Evaporation in focus. Nat Geosci 3(5):296–296CrossRef Dolman AJ, De Jeu RAM (2010) Evaporation in focus. Nat Geosci 3(5):296–296CrossRef
go back to reference Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A et al (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag 79(1):1–27CrossRef Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A et al (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag 79(1):1–27CrossRef
go back to reference Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002):881–884CrossRef Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002):881–884CrossRef
go back to reference Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17(2):294–304CrossRef Fekete BM, Vörösmarty CJ, Roads JO, Willmott CJ (2004) Uncertainties in precipitation and their impacts on runoff estimates. J Clim 17(2):294–304CrossRef
go back to reference Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112(3):901–919CrossRef Fisher JB, Tu KP, Baldocchi DD (2008) Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens Environ 112(3):901–919CrossRef
go back to reference Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99CrossRef Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99CrossRef
go back to reference Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng 129(1):53–63CrossRef Hargreaves GH, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng 129(1):53–63CrossRef
go back to reference Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109CrossRef Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109CrossRef
go back to reference Holland WR (1978) The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasi-geostrophic model. J Phys Oceanogr 8(3):363–392CrossRef Holland WR (1978) The role of mesoscale eddies in the general circulation of the ocean—numerical experiments using a wind-driven quasi-geostrophic model. J Phys Oceanogr 8(3):363–392CrossRef
go back to reference Hunt HW, Elliott ET, Detling JK, Morgan JA, Chen DX (1996) Responses of a C3 and a C4 perennial grass to elevated CO2 and temperature under different water regimes. Glob Chang Biol 2(1):35–47CrossRef Hunt HW, Elliott ET, Detling JK, Morgan JA, Chen DX (1996) Responses of a C3 and a C4 perennial grass to elevated CO2 and temperature under different water regimes. Glob Chang Biol 2(1):35–47CrossRef
go back to reference Intergovernmental Panel on Climate Change (2014) Climate change 2014—impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, Cambridge Intergovernmental Panel on Climate Change (2014) Climate change 2014—impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, Cambridge
go back to reference Jensen ME, Haise HR (1963) Estimating evapotranspiration from solar radiation. Proc Am Soc Civ Eng, J Irrig Drain Div 89:15–41 Jensen ME, Haise HR (1963) Estimating evapotranspiration from solar radiation. Proc Am Soc Civ Eng, J Irrig Drain Div 89:15–41
go back to reference Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 50(3) Katul GG, Oren R, Manzoni S, Higgins C, Parlange MB (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev Geophys 50(3)
go back to reference Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res Atmos 99(D7):14415–14428CrossRef Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res Atmos 99(D7):14415–14428CrossRef
go back to reference Liu Y, Zhuang Q, Chen M, Pan Z, Tchebakova N, Sokolov A et al (2013) Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Glob Planet Chang 108:85–99CrossRef Liu Y, Zhuang Q, Chen M, Pan Z, Tchebakova N, Sokolov A et al (2013) Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Glob Planet Chang 108:85–99CrossRef
go back to reference Liu Y, Zhuang Q, Pan Z, Miralles D, Tchebakova N, Kicklighter D, Chen J, Sirin A, He Y, Zhou G, Melillo J (2014) Response of evapotranspiration and water availability to the changing climate in northern Eurasia. Clim Chang 126(3–4):413–427CrossRef Liu Y, Zhuang Q, Pan Z, Miralles D, Tchebakova N, Kicklighter D, Chen J, Sirin A, He Y, Zhou G, Melillo J (2014) Response of evapotranspiration and water availability to the changing climate in northern Eurasia. Clim Chang 126(3–4):413–427CrossRef
go back to reference Liu Y, Zhuang Q, Miralles D, Pan Z, Kicklighter D, Zhu Q, He Y, Chen J, Tchebakova N, Sirin A, Niyogi D, Melillo J (2015) Evapotranspiration in northern Eurasia: impact of forcing uncertainties on terrestrial ecosystem model estimates. J Geophys Res Atmos 120(7):2647–2660CrossRef Liu Y, Zhuang Q, Miralles D, Pan Z, Kicklighter D, Zhu Q, He Y, Chen J, Tchebakova N, Sirin A, Niyogi D, Melillo J (2015) Evapotranspiration in northern Eurasia: impact of forcing uncertainties on terrestrial ecosystem model estimates. J Geophys Res Atmos 120(7):2647–2660CrossRef
go back to reference Lu X, Zhuang Q (2010) Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens Environ 114(9):1924–1939CrossRef Lu X, Zhuang Q (2010) Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sens Environ 114(9):1924–1939CrossRef
go back to reference Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092CrossRef Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092CrossRef
go back to reference Miralles DG, De Jeu RA, Gash JH, Holmes TR, Dolman AJ (2011) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:967–981CrossRef Miralles DG, De Jeu RA, Gash JH, Holmes TR, Dolman AJ (2011) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci 15:967–981CrossRef
go back to reference Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19(205-23):4 Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19(205-23):4
go back to reference Mooney H, Cropper A, Reid W (2005) Confronting the human dilemma. Nature 434(7033):561–562CrossRef Mooney H, Cropper A, Reid W (2005) Confronting the human dilemma. Nature 434(7033):561–562CrossRef
go back to reference Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536CrossRef Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111(4):519–536CrossRef
go back to reference Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800CrossRef Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115(8):1781–1800CrossRef
go back to reference Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ, Miralles DG (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol Earth Syst Sci Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ, Miralles DG (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrol Earth Syst Sci
go back to reference Pan Y, Mcguire AD, Kicklighter DW, Melillo JM (1996) The importance of climate and soils for estimates of net primary production: a sensitivity analysis with the terrestrial ecosystem model. Glob Chang Biol 2(1):5–23CrossRef Pan Y, Mcguire AD, Kicklighter DW, Melillo JM (1996) The importance of climate and soils for estimates of net primary production: a sensitivity analysis with the terrestrial ecosystem model. Glob Chang Biol 2(1):5–23CrossRef
go back to reference Pan S, Tian H, Dangal SR, Yang Q, Yang J, Lu C et al (2015) Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century. Earth’s Future 3(1):15–35CrossRef Pan S, Tian H, Dangal SR, Yang Q, Yang J, Lu C et al (2015) Responses of global terrestrial evapotranspiration to climate change and increasing atmospheric CO2 in the 21st century. Earth’s Future 3(1):15–35CrossRef
go back to reference Qu Y, Zhuang Q (2018) Modeling leaf area index in North America using a process-based terrestrial ecosystem model. Ecosphere 9(1) Qu Y, Zhuang Q (2018) Modeling leaf area index in North America using a process-based terrestrial ecosystem model. Ecosphere 9(1)
go back to reference Qu Y, Maksyutov S, & Zhuang Q (2018) An efficient method for accelerating the spin-up process for process-based biogeochemistry models. Biogeosciences 15(13) Qu Y, Maksyutov S, & Zhuang Q (2018) An efficient method for accelerating the spin-up process for process-based biogeochemistry models. Biogeosciences 15(13)
go back to reference Rasmusson EM (1968) Atmospheric water vapor transport and the water balance of North America: II. Large-scale water balance investigations. Mon Weather Rev 96(10):720–734CrossRef Rasmusson EM (1968) Atmospheric water vapor transport and the water balance of North America: II. Large-scale water balance investigations. Mon Weather Rev 96(10):720–734CrossRef
go back to reference Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935CrossRef Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935CrossRef
go back to reference Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H, Harnik N, Leetmaa A, Lau N, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184CrossRef Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H, Harnik N, Leetmaa A, Lau N, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184CrossRef
go back to reference Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185CrossRef Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W et al (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob Chang Biol 9(2):161–185CrossRef
go back to reference Sobrino JA, Gómez M, Jiménez-Muñoz JC, Olioso A, Chehbouni G (2005) A simple algorithm to estimate evapotranspiration from DAIS data: application to the DAISEX campaigns. J Hydrol 315(1):117–125CrossRef Sobrino JA, Gómez M, Jiménez-Muñoz JC, Olioso A, Chehbouni G (2005) A simple algorithm to estimate evapotranspiration from DAIS data: application to the DAISEX campaigns. J Hydrol 315(1):117–125CrossRef
go back to reference Song L, Zhuang Q, Yin Y, Zhu X, Wu S (2017) Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ Res Lett 12(1):014011CrossRef Song L, Zhuang Q, Yin Y, Zhu X, Wu S (2017) Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environ Res Lett 12(1):014011CrossRef
go back to reference Sun G, Alstad K, Chen J, Chen S, Ford CR, Lin G et al (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255CrossRef Sun G, Alstad K, Chen J, Chen S, Ford CR, Lin G et al (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255CrossRef
go back to reference Thornthwaite CW (1948) An approach toward a rational classification of climate. 66:(1)77. LWWCrossRef Thornthwaite CW (1948) An approach toward a rational classification of climate. 66:(1)77. LWWCrossRef
go back to reference Van Vuuren DP, Den Elzen MG, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B et al (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Chang 81(2):119–159CrossRef Van Vuuren DP, Den Elzen MG, Lucas PL, Eickhout B, Strengers BJ, Van Ruijven B et al (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Chang 81(2):119–159CrossRef
go back to reference Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207(3–4):147–169CrossRef Vörösmarty CJ, Federer CA, Schloss AL (1998) Potential evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling. J Hydrol 207(3–4):147–169CrossRef
go back to reference Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288CrossRef Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288CrossRef
go back to reference Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561CrossRef Vörösmarty CJ, McIntyre PB, Gessner MO, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn SE, Sullivan CA, Liermann CR, Davies PM (2010) Global threats to human water security and river biodiversity. Nature 467(7315):555–561CrossRef
go back to reference Wang K, Wang P, Li Z, Cribb M, Sparrow M (2007) A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J Geophys Res Atmos 112(D15) Wang K, Wang P, Li Z, Cribb M, Sparrow M (2007) A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J Geophys Res Atmos 112(D15)
go back to reference Wiegand CL, Richardson AJ, Kanemasu ET (1979) Leaf area index estimates for wheat from Landsat and their implications for evapotranspiration and crop modeling. Agron J 71(2):336–342CrossRef Wiegand CL, Richardson AJ, Kanemasu ET (1979) Leaf area index estimates for wheat from Landsat and their implications for evapotranspiration and crop modeling. Agron J 71(2):336–342CrossRef
go back to reference Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100(1):1–18CrossRef Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100(1):1–18CrossRef
go back to reference Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JC, Gao F et al (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475CrossRef Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JC, Gao F et al (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475CrossRef
go back to reference Zhang Y, Peña-Arancibia JL, McVicar TR, Chiew FH, Vaze J, Liu C, …, Miralles DG (2016) Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci Rep, 6 19124 Zhang Y, Peña-Arancibia JL, McVicar TR, Chiew FH, Vaze J, Liu C, …, Miralles DG (2016) Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci Rep, 6 19124
go back to reference Zhuang Q, McGuire AD, Melillo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus B 55(3):751–776CrossRef Zhuang Q, McGuire AD, Melillo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: a modeling analysis of the influences of soil thermal dynamics. Tellus B 55(3):751–776CrossRef
go back to reference Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob Ecol Biogeogr 19(5):649–662 Zhuang Q, He J, Lu Y, Ji L, Xiao J, Luo T (2010) Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th century: an analysis with a process-based biogeochemical model. Glob Ecol Biogeogr 19(5):649–662
go back to reference Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126(1):67–80CrossRef Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126(1):67–80CrossRef
Metadata
Title
Evapotranspiration in North America: implications for water resources in a changing climate
Authors
Yang Qu
Qianlai Zhuang
Publication date
15-05-2019
Publisher
Springer Netherlands
Published in
Mitigation and Adaptation Strategies for Global Change / Issue 2/2020
Print ISSN: 1381-2386
Electronic ISSN: 1573-1596
DOI
https://doi.org/10.1007/s11027-019-09865-6

Other articles of this Issue 2/2020

Mitigation and Adaptation Strategies for Global Change 2/2020 Go to the issue