Skip to main content
Top
Published in: Quantum Information Processing 9/2018

01-09-2018

Evolution of coherence and non-classicality under global environmental interaction

Authors: Samyadeb Bhattacharya, Subhashish Banerjee, Arun Kumar Pati

Published in: Quantum Information Processing | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A master equation has been constructed for a global system–bath interaction in the both absence and presence of non-Markovian noise. For the memoryless case, it has been exactly solved for a paradigmatic class of two qubit states in high- and zero-temperature thermal environment. For the non-Markovian model, it has been solved for zero-temperature bath. The evolution of quantum coherence and entanglement has been observed in the presence of the above-mentioned interactions. We show that the global part of the system–bath interaction compensates for the decoherence, resulting in slowdown of coherence and entanglement decay. For an appropriately defined limiting case, both coherence and entanglement show freezing behavior for the high-temperature bath. In case of zero-temperature bath, the mentioned interaction not only stabilizes the non-classical correlations, but also enhances them for a finite period. For the memory-dependent case, we have seen that the global interaction enhances the backflow of information from environment to the system, as it enhances the regeneration of coherence and entanglement. Also we have studied the generation of quantum Fisher information by the mentioned process. An intuitive measure of non-classicality based on non-commutativity of quantum states has been considered. Bounds on generated quantum Fisher information have been found in terms of quantumness and coherence. This gives us a novel understanding of quantum Fisher information as a measure of non-classicality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)MATHCrossRef Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)MATHCrossRef
2.
go back to reference Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2000) Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (2000)
3.
go back to reference Ma, X.S., et al.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)ADSCrossRef Ma, X.S., et al.: Quantum teleportation over 143 kilometres using active feed-forward. Nature 489, 269–273 (2012)ADSCrossRef
4.
go back to reference Cirac, J.I., Zoller, P., Kimble, J.H., et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)ADSCrossRef Cirac, J.I., Zoller, P., Kimble, J.H., et al.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)ADSCrossRef
5.
go back to reference Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSMATHCrossRef Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSMATHCrossRef
6.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University of Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University of Press, Cambridge (2000)MATH
7.
go back to reference Liang, Y.C., Kaszlikowski, D., Englert, B.-G., Kwek, L.C., Oh, C.H.: Tomographic quantum cryptography. Phys. Rev. A 68(022324), 1–9 (2003) Liang, Y.C., Kaszlikowski, D., Englert, B.-G., Kwek, L.C., Oh, C.H.: Tomographic quantum cryptography. Phys. Rev. A 68(022324), 1–9 (2003)
8.
9.
go back to reference Sandhya, S.N., Banerjee, S.: Geometric phase: an indicator of entanglement. Eur. Phys. J. D 66(168), 1–6 (2012)ADS Sandhya, S.N., Banerjee, S.: Geometric phase: an indicator of entanglement. Eur. Phys. J. D 66(168), 1–6 (2012)ADS
10.
go back to reference Banerjee, S., Chandrashekar, C.M., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87(042119), 1–5 (2013) Banerjee, S., Chandrashekar, C.M., Pati, A.K.: Enhancement of geometric phase by frustration of decoherence: a Parrondo-like effect. Phys. Rev. A 87(042119), 1–5 (2013)
11.
go back to reference Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77(012318), 1–9 (2008) Srikanth, R., Banerjee, S.: Squeezed generalized amplitude damping channel. Phys. Rev. A 77(012318), 1–9 (2008)
12.
go back to reference Chandrashekar, C.M., Srikanth, R., Banerjee, S.: Symmetries and noise in quantum walk. Phys. Rev. A 76(022316), 1–15 (2007)MathSciNet Chandrashekar, C.M., Srikanth, R., Banerjee, S.: Symmetries and noise in quantum walk. Phys. Rev. A 76(022316), 1–15 (2007)MathSciNet
13.
go back to reference Banerjee, S., Srikanth, R., Chandrashekar, C.M., Rungta, P.: Symmetry-noise interplay in a quantum walk on an n-cycle. Phys. Rev. A 78(052316), 1–5 (2008) Banerjee, S., Srikanth, R., Chandrashekar, C.M., Rungta, P.: Symmetry-noise interplay in a quantum walk on an n-cycle. Phys. Rev. A 78(052316), 1–5 (2008)
14.
go back to reference Srikanth, R., Banerjee, S., Chandrashekar, C.M.: Quantumness in a decoherent quantum walk using measurement-induced disturbance. Phys. Rev. A 81(062123), 1–7 (2010) Srikanth, R., Banerjee, S., Chandrashekar, C.M.: Quantumness in a decoherent quantum walk using measurement-induced disturbance. Phys. Rev. A 81(062123), 1–7 (2010)
15.
go back to reference Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)ADSMathSciNetMATHCrossRef Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)ADSMathSciNetMATHCrossRef
16.
go back to reference Thapliyal, K., Banerjee, S., Pathak, A.: Tomograms for open quantum systems: in(finite) dimensional optical and spin systems. Ann. Phys. 366, 148–167 (2016)ADSMathSciNetMATHCrossRef Thapliyal, K., Banerjee, S., Pathak, A.: Tomograms for open quantum systems: in(finite) dimensional optical and spin systems. Ann. Phys. 366, 148–167 (2016)ADSMathSciNetMATHCrossRef
17.
go back to reference Goyal, S., Banerjee, S., Ghosh, S.: Effect of control procedures on the evolution of entanglement in open quantum systems. Phys. Rev. A 85(012327), 1–17 (2012) Goyal, S., Banerjee, S., Ghosh, S.: Effect of control procedures on the evolution of entanglement in open quantum systems. Phys. Rev. A 85(012327), 1–17 (2012)
18.
go back to reference Banerjee, S., Ghosh, R.: Quantum theory of a Stern–Gerlach system in contact with a linearly dissipative environment. Phys. Rev. A 62(042105), 1–8 (2000) Banerjee, S., Ghosh, R.: Quantum theory of a Stern–Gerlach system in contact with a linearly dissipative environment. Phys. Rev. A 62(042105), 1–8 (2000)
19.
go back to reference Banerjee, S., Ghosh, R.: General quantum Brownian motion with initially correlated and nonlinearly coupled environment. Phys. Rev. E 67(056120), 1–13 (2003) Banerjee, S., Ghosh, R.: General quantum Brownian motion with initially correlated and nonlinearly coupled environment. Phys. Rev. E 67(056120), 1–13 (2003)
20.
go back to reference Ishizaki, A., Fleming, G.R.: On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130(234110), 1–8 (2009) Ishizaki, A., Fleming, G.R.: On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. J. Chem. Phys. 130(234110), 1–8 (2009)
21.
go back to reference Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92(032311), 1–8 (2015) Leggio, B., Lo Franco, R., Soares-Pinto, D.O., Horodecki, P., Compagno, G.: Distributed correlations and information flows within a hybrid multipartite quantum-classical system. Phys. Rev. A 92(032311), 1–8 (2015)
22.
go back to reference Man, Z.-X., Xia, Y.-J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5(13843), 1–13 (2015) Man, Z.-X., Xia, Y.-J., Lo Franco, R.: Cavity-based architecture to preserve quantum coherence and entanglement. Sci. Rep. 5(13843), 1–13 (2015)
23.
go back to reference Xu, J.-S., Sun, K., Li, C.-F., Xu, X.-Y., Guo, G.-C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4(2851), 1–7 (2013) Xu, J.-S., Sun, K., Li, C.-F., Xu, X.-Y., Guo, G.-C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4(2851), 1–7 (2013)
24.
go back to reference Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27(1345053), 1–20 (2013)MathSciNetMATH Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27(1345053), 1–20 (2013)MathSciNetMATH
25.
go back to reference Man, Z.-X., Xia, Y.-J., Lo, R.: Franco, harnessing non-Markovian quantum memory by environmental coupling. Phys. Rev. A 92(012315), 1–8 (2015) Man, Z.-X., Xia, Y.-J., Lo, R.: Franco, harnessing non-Markovian quantum memory by environmental coupling. Phys. Rev. A 92(012315), 1–8 (2015)
26.
go back to reference Wolf, M.M., et al.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101(150402), 1–4 (2008)MathSciNetMATH Wolf, M.M., et al.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101(150402), 1–4 (2008)MathSciNetMATH
27.
go back to reference Breuer, H.P., et al.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(210401), 1–4 (2009)MathSciNet Breuer, H.P., et al.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(210401), 1–4 (2009)MathSciNet
28.
go back to reference Laine, E.M., et al.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81(062115), 1–8 (2010) Laine, E.M., et al.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81(062115), 1–8 (2010)
29.
go back to reference Rivas, A., et al.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105(050403), 1–4 (2010)MathSciNet Rivas, A., et al.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105(050403), 1–4 (2010)MathSciNet
30.
go back to reference Rajagopal, A.K., Devi, A.R.U., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms. Phys. Rev. A 82(042107), 1–7 (2010) Rajagopal, A.K., Devi, A.R.U., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms. Phys. Rev. A 82(042107), 1–7 (2010)
31.
go back to reference Breuer, H.P.: Foundations and measures of quantum non-Markovianity. J. Phys. B At. Mol. Opt. Phys. 45(154001), 1–12 (2012) Breuer, H.P.: Foundations and measures of quantum non-Markovianity. J. Phys. B At. Mol. Opt. Phys. 45(154001), 1–12 (2012)
32.
go back to reference Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16(115), 1–21 (2017)MathSciNetMATH Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16(115), 1–21 (2017)MathSciNetMATH
33.
go back to reference Banerjee, S., Kumar, N.P., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian dynamics of discrete-time quantum walks. arXiv:1703.08004 (2017) Banerjee, S., Kumar, N.P., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian dynamics of discrete-time quantum walks. arXiv:​1703.​08004 (2017)
34.
go back to reference Kumar, P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. arXiv:1711.03267 (2017) Kumar, P., Banerjee, S., Srikanth, R., Jagadish, V., Petruccione, F.: Non-Markovian evolution: a quantum walk perspective. arXiv:​1711.​03267 (2017)
35.
go back to reference Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(140401), 1–5 (2014) Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(140401), 1–5 (2014)
36.
go back to reference Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(120404), 1–6 (2016) Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(120404), 1–6 (2016)
37.
go back to reference Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(020403), 1–6 (2015)MathSciNet Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(020403), 1–6 (2015)MathSciNet
38.
go back to reference Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91(052115), 1–8 (2015) Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91(052115), 1–8 (2015)
40.
go back to reference Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116(070402), 1–5 (2016) Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116(070402), 1–5 (2016)
41.
go back to reference Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93(012110), 1–7 (2016)MathSciNet Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93(012110), 1–7 (2016)MathSciNet
42.
go back to reference de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A Math. Theor. 50(045301), 1–35 (2017)MathSciNetMATH de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A Math. Theor. 50(045301), 1–35 (2017)MathSciNetMATH
44.
go back to reference Tang, N., Cheng, W., Zeng, H.-S.: Coherence, correlation and non-Markovianity in qubit systems. Eur. Phys. J. D 68(278), 1–8 (2014) Tang, N., Cheng, W., Zeng, H.-S.: Coherence, correlation and non-Markovianity in qubit systems. Eur. Phys. J. D 68(278), 1–8 (2014)
45.
go back to reference Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816–834 (2010)ADSMathSciNetMATHCrossRef Banerjee, S., Ravishankar, V., Srikanth, R.: Dynamics of entanglement in two-qubit open system interacting with a squeezed thermal bath via dissipative interaction. Ann. Phys. 325, 816–834 (2010)ADSMathSciNetMATHCrossRef
47.
48.
go back to reference Rao, C.R.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)MathSciNetMATH Rao, C.R.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37, 81–91 (1945)MathSciNetMATH
49.
go back to reference Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)MATH Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)MATH
50.
go back to reference Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory, Chapter VI. North-Holland, Amsterdam (1982) Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory, Chapter VI. North-Holland, Amsterdam (1982)
51.
go back to reference Hall, M.J.W.: Quantum properties of classical Fisher information. Phys. Rev. A 62(012107), 1–6 (2000)MathSciNet Hall, M.J.W.: Quantum properties of classical Fisher information. Phys. Rev. A 62(012107), 1–6 (2000)MathSciNet
52.
go back to reference Banerjee, S., Alok, A.K., Omkar, S.: Quantum Fisher and skew information for Unruh accelerated Dirac qubit. Eur. Phys. J. C 76(437), 1–9 (2016) Banerjee, S., Alok, A.K., Omkar, S.: Quantum Fisher and skew information for Unruh accelerated Dirac qubit. Eur. Phys. J. C 76(437), 1–9 (2016)
53.
go back to reference Ferro, L., Facchi, P., Fazio, R., Illuminati, F., Marmo, G., Vedral, V., Pascazio, S.: Measuring quantumness: from theory to observability in interferometric setups. arXiv: 1501.03099v1 (2015) Ferro, L., Facchi, P., Fazio, R., Illuminati, F., Marmo, G., Vedral, V., Pascazio, S.: Measuring quantumness: from theory to observability in interferometric setups. arXiv:​ 1501.​03099v1 (2015)
54.
go back to reference Preskill, J.: Quantum Information and Computation. Lecture Notes for Physics, vol. 229. Springer, Berlin (1998)MATH Preskill, J.: Quantum Information and Computation. Lecture Notes for Physics, vol. 229. Springer, Berlin (1998)MATH
55.
go back to reference Lider, D.A., et al.: Condensed matter from completely positive maps to the quantum Markovian semigroup master equation. Chem. Phys. 268, 35–53 (2001)ADSCrossRef Lider, D.A., et al.: Condensed matter from completely positive maps to the quantum Markovian semigroup master equation. Chem. Phys. 268, 35–53 (2001)ADSCrossRef
56.
go back to reference Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)MathSciNetMATH Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)MathSciNetMATH
57.
go back to reference Rau, A.R.P.: Algebraic characterization of X-states in quantum information. J. Phys. A 42(412002), 1–7 (2009)MATH Rau, A.R.P.: Algebraic characterization of X-states in quantum information. J. Phys. A 42(412002), 1–7 (2009)MATH
58.
go back to reference Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(2766), 1–23 (1963)MathSciNetMATH Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(2766), 1–23 (1963)MathSciNetMATH
59.
go back to reference Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(277), 1–3 (1963)MathSciNetMATH Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10(277), 1–3 (1963)MathSciNetMATH
60.
go back to reference Almeida, J., de Groot, P.C., Huelga, S.F., Liguori, A.M., Plenio, M.B.: Probing quantum coherence in qubit arrays. J. Phys. B At. Mol. Opt. Phys. 46(104002), 1–8 (2013) Almeida, J., de Groot, P.C., Huelga, S.F., Liguori, A.M., Plenio, M.B.: Probing quantum coherence in qubit arrays. J. Phys. B At. Mol. Opt. Phys. 46(104002), 1–8 (2013)
61.
go back to reference Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302(012037), 1–5 (2011) Lloyd, S.: Quantum coherence in biological systems. J. Phys. Conf. Ser. 302(012037), 1–5 (2011)
62.
go back to reference Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., Grondelle, R.V.: Quantum coherence in photosynthesis for efficient solar energy conversion. Nat. Phys. 10, 676–682 (2014)CrossRef Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., Grondelle, R.V.: Quantum coherence in photosynthesis for efficient solar energy conversion. Nat. Phys. 10, 676–682 (2014)CrossRef
63.
go back to reference Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11(033003), 1–13 (2009) Rebentrost, P., Mohseni, M., Kassal, I., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum transport. New J. Phys. 11(033003), 1–13 (2009)
64.
go back to reference Manzano, D., Tiersch, M., Asadian, A., Briegel, H.J.: Quantum transport efficiency and Fourier’s law. Phys. Rev. E 86(061118), 1–5 (2012) Manzano, D., Tiersch, M., Asadian, A., Briegel, H.J.: Quantum transport efficiency and Fourier’s law. Phys. Rev. E 86(061118), 1–5 (2012)
65.
go back to reference Kondepudi, D., Prigogine, I.: Modern Thermodynamics. Wiley, Sussex (1998)MATH Kondepudi, D., Prigogine, I.: Modern Thermodynamics. Wiley, Sussex (1998)MATH
66.
go back to reference Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19(1227), 1–5 (1978)MathSciNetMATH Spohn, H.: Entropy production for quantum dynamical semigroups. J. Math. Phys. 19(1227), 1–5 (1978)MathSciNetMATH
67.
go back to reference Brandao, F.G.S.L., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. PNAS 112, 3275–3279 (2015)ADSCrossRef Brandao, F.G.S.L., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. PNAS 112, 3275–3279 (2015)ADSCrossRef
68.
go back to reference Scully, M., Zubairy, M., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)ADSCrossRef Scully, M., Zubairy, M., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)ADSCrossRef
69.
go back to reference Scully, M.O.: Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104(207701), 1–4 (2010) Scully, M.O.: Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. Phys. Rev. Lett. 104(207701), 1–4 (2010)
70.
go back to reference Mohseni, M., Rebentrost, P., Lloyd, S., AspuruGuzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(174106), 1–10 (2008) Mohseni, M., Rebentrost, P., Lloyd, S., AspuruGuzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(174106), 1–10 (2008)
71.
go back to reference Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10(113019), 1–15 (2008) Plenio, M.B., Huelga, S.F.: Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10(113019), 1–15 (2008)
72.
go back to reference Lin, Y.L., et al.: Dissipative production of a maximally entangled steady state. Nature 504, 415418 (2013)CrossRef Lin, Y.L., et al.: Dissipative production of a maximally entangled steady state. Nature 504, 415418 (2013)CrossRef
73.
go back to reference Beretta, G.P.: Maximum entropy production rate in quantum thermodynamics. J. Phys. Conf. Ser. 237(012004), 1–32 (2010) Beretta, G.P.: Maximum entropy production rate in quantum thermodynamics. J. Phys. Conf. Ser. 237(012004), 1–32 (2010)
74.
go back to reference Mari, A., Eisert, J.: Cooling by heating: very hot thermal light can significantly cool quantum systems. PRL 108(120602), 1–5 (2012) Mari, A., Eisert, J.: Cooling by heating: very hot thermal light can significantly cool quantum systems. PRL 108(120602), 1–5 (2012)
75.
go back to reference Correa, L.A., et al.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4(3949), 1–9 (2014) Correa, L.A., et al.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4(3949), 1–9 (2014)
76.
go back to reference Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92(012118), 1–6 (2015) Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92(012118), 1–6 (2015)
77.
go back to reference Alok, A.K., Banerjee, S., Sankar, S.U.: Quantum correlations in terms of neutrino oscillation probabilities. arXiv:1411.5536 (2014) Alok, A.K., Banerjee, S., Sankar, S.U.: Quantum correlations in terms of neutrino oscillation probabilities. arXiv:​1411.​5536 (2014)
78.
go back to reference Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114(210401), 1–6 (2015) Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114(210401), 1–6 (2015)
79.
go back to reference Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(2245), 1–4 (1998)MATH Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(2245), 1–4 (1998)MATH
80.
go back to reference Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett 78(5022), 1–4 (1997) Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett 78(5022), 1–4 (1997)
82.
go back to reference Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(180403), 1–4 (2003) Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(180403), 1–4 (2003)
83.
go back to reference Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69(032106), 1–8 (2004)MathSciNet Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69(032106), 1–8 (2004)MathSciNet
84.
go back to reference Iyengar, P., Chandan, G.N., Srikanth, R.: Quantifying quantumness via commutators: an application to quantum walk. arXiv:1312.1329 (2013) Iyengar, P., Chandan, G.N., Srikanth, R.: Quantifying quantumness via commutators: an application to quantum walk. arXiv:​1312.​1329 (2013)
85.
go back to reference Zyczkowski, K., et al.: Dynamics of quantum entanglement. Phys. Rev. A 65(012101), 1–9 (2001)MathSciNet Zyczkowski, K., et al.: Dynamics of quantum entanglement. Phys. Rev. A 65(012101), 1–9 (2001)MathSciNet
86.
go back to reference Daffer, S., Wodkiewicz, K., McIver, J.K.: Quantum Markov channels for qubits. Phys. Rev. A 67(062312), 1–13 (2003)MathSciNetMATH Daffer, S., Wodkiewicz, K., McIver, J.K.: Quantum Markov channels for qubits. Phys. Rev. A 67(062312), 1–13 (2003)MathSciNetMATH
87.
go back to reference Chakrabarty, I., Banerjee, S., Siddharth, N.: A study of quantum correlations in open quantum systems. Quantum Inf. Comput. 11, 0541–0562 (2011)MathSciNetMATH Chakrabarty, I., Banerjee, S., Siddharth, N.: A study of quantum correlations in open quantum systems. Quantum Inf. Comput. 11, 0541–0562 (2011)MathSciNetMATH
88.
go back to reference Yu, T., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283, 676–680 (2010)ADSCrossRef Yu, T., Eberly, J.H.: Entanglement evolution in a non-Markovian environment. Opt. Commun. 283, 676–680 (2010)ADSCrossRef
89.
90.
go back to reference Diosi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum state diffusion. Phys. Rev. A 58(1699), 1–14 (1998)MathSciNet Diosi, L., Gisin, N., Strunz, W.T.: Non-Markovian quantum state diffusion. Phys. Rev. A 58(1699), 1–14 (1998)MathSciNet
Metadata
Title
Evolution of coherence and non-classicality under global environmental interaction
Authors
Samyadeb Bhattacharya
Subhashish Banerjee
Arun Kumar Pati
Publication date
01-09-2018
Publisher
Springer US
Published in
Quantum Information Processing / Issue 9/2018
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1989-4

Other articles of this Issue 9/2018

Quantum Information Processing 9/2018 Go to the issue