Skip to main content
Top
Published in: Foundations of Computational Mathematics 5/2015

01-10-2015

Exact Support Recovery for Sparse Spikes Deconvolution

Authors: Vincent Duval, Gabriel Peyré

Published in: Foundations of Computational Mathematics | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper studies sparse spikes deconvolution over the space of measures. We focus on the recovery properties of the support of the measure (i.e., the location of the Dirac masses) using total variation of measures (TV) regularization. This regularization is the natural extension of the \(\ell ^1\) norm of vectors to the setting of measures. We show that support identification is governed by a specific solution of the dual problem (a so-called dual certificate) having minimum \(L^2\) norm. Our main result shows that if this certificate is non-degenerate (see the definition below), when the signal-to-noise ratio is large enough TV regularization recovers the exact same number of Diracs. We show that both the locations and the amplitudes of these Diracs converge toward those of the input measure when the noise drops to zero. Moreover, the non-degeneracy of this certificate can be checked by computing a so-called vanishing derivative pre-certificate. This proxy can be computed in closed form by solving a linear system. Lastly, we draw connections between the support of the recovered measure on a continuous domain and on a discretized grid. We show that when the signal-to-noise level is large enough, and provided the aforementioned dual certificate is non-degenerate, the solution of the discretized problem is supported on pairs of Diracs which are neighbors of the Diracs of the input measure. This gives a precise description of the convergence of the solution of the discretized problem toward the solution of the continuous grid-free problem, as the grid size tends to zero.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J-M. Azais, Y. De Castro, and F. Gamboa. Spike detection from inaccurate samplings. Applied and Computational Harmonic Analysis, to appear, 2014. J-M. Azais, Y. De Castro, and F. Gamboa. Spike detection from inaccurate samplings. Applied and Computational Harmonic Analysis, to appear, 2014.
2.
go back to reference B.N. Bhaskar and B. Recht. Atomic norm denoising with applications to line spectral estimation. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing, pages 261–268, 2011. B.N. Bhaskar and B. Recht. Atomic norm denoising with applications to line spectral estimation. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing, pages 261–268, 2011.
3.
go back to reference T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot. Sparse sampling of signal innovations. IEEE Signal Processing Magazine, 25(2):31–40, 2008. T. Blu, P.-L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot. Sparse sampling of signal innovations. IEEE Signal Processing Magazine, 25(2):31–40, 2008.
4.
go back to reference K. Bredies and H.K. Pikkarainen. Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218, 2013. K. Bredies and H.K. Pikkarainen. Inverse problems in spaces of measures. ESAIM: Control, Optimisation and Calculus of Variations, 19(1):190–218, 2013.
5.
go back to reference H. Brézis, P.G. Ciarlet, and J.L. Lions. Analyse fonctionnelle: Théorie et applications. Collection Mathématiques appliquées pour la maîtrise. Dunod, 1999. H. Brézis, P.G. Ciarlet, and J.L. Lions. Analyse fonctionnelle: Théorie et applications. Collection Mathématiques appliquées pour la maîtrise. Dunod, 1999.
6.
go back to reference M. Burger and S. Osher. Convergence rates of convex variational regularization. Inverse Problems, 20(5):1411–1421, 2004. M. Burger and S. Osher. Convergence rates of convex variational regularization. Inverse Problems, 20(5):1411–1421, 2004.
7.
go back to reference E. J. Candès and C. Fernandez-Granda. Super-resolution from noisy data. Journal of Fourier Analysis and Applications, 19(6):1229–1254, 2013. E. J. Candès and C. Fernandez-Granda. Super-resolution from noisy data. Journal of Fourier Analysis and Applications, 19(6):1229–1254, 2013.
8.
go back to reference E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics, 67(6):906–956, 2014. E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics, 67(6):906–956, 2014.
9.
go back to reference S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1999. S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM journal on scientific computing, 20(1):33–61, 1999.
10.
go back to reference J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics, 38(5):826–844, 1973. J. F. Claerbout and F. Muir. Robust modeling with erratic data. Geophysics, 38(5):826–844, 1973.
11.
go back to reference L. Condat and A. Hirabayashi. Cadzow denoising upgraded: A new projection method for the recovery of dirac pulses from noisy linear measurements. Sampling Theory in Signal and Image Processing, to appear, 2014. L. Condat and A. Hirabayashi. Cadzow denoising upgraded: A new projection method for the recovery of dirac pulses from noisy linear measurements. Sampling Theory in Signal and Image Processing, to appear, 2014.
12.
go back to reference Y. de Castro and F. Gamboa. Exact reconstruction using beurling minimal extrapolation. Journal of Mathematical Analysis and Applications, 395(1):336–354, 2012. Y. de Castro and F. Gamboa. Exact reconstruction using beurling minimal extrapolation. Journal of Mathematical Analysis and Applications, 395(1):336–354, 2012.
13.
go back to reference L. Demanet, D. Needell, and N. Nguyen. Super-resolution via superset selection and pruning. CoRR, abs/1302.6288, 2013. L. Demanet, D. Needell, and N. Nguyen. Super-resolution via superset selection and pruning. CoRR, abs/1302.6288, 2013.
14.
go back to reference D. L. Donoho. Superresolution via sparsity constraints. SIAM J. Math. Anal., 23(5):1309–1331, September 1992. D. L. Donoho. Superresolution via sparsity constraints. SIAM J. Math. Anal., 23(5):1309–1331, September 1992.
15.
go back to reference C. Dossal and S. Mallat. Sparse spike deconvolution with minimum scale. In Proceedings of SPARS, pages 123–126, November 2005. C. Dossal and S. Mallat. Sparse spike deconvolution with minimum scale. In Proceedings of SPARS, pages 123–126, November 2005.
16.
go back to reference M. F. Duarte and R. G. Baraniuk. Spectral compressive sensing. Applied and Computational Harmonic Analysis, 35(1):111–129, 2013. M. F. Duarte and R. G. Baraniuk. Spectral compressive sensing. Applied and Computational Harmonic Analysis, 35(1):111–129, 2013.
17.
go back to reference I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Number, vol. 1 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1976. I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Number, vol. 1 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, 1976.
18.
go back to reference A. Fannjiang and W. Liao. Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Img. Sci., 5(1):179–202, February 2012. A. Fannjiang and W. Liao. Coherence pattern-guided compressive sensing with unresolved grids. SIAM J. Img. Sci., 5(1):179–202, February 2012.
19.
go back to reference C. Fernandez-Granda. Support detection in super-resolution. Proc. Proceedings of the 10th International Conference on Sampling Theory and Applications, pages 145–148, 2013. C. Fernandez-Granda. Support detection in super-resolution. Proc. Proceedings of the 10th International Conference on Sampling Theory and Applications, pages 145–148, 2013.
20.
go back to reference J.J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory, 50(6):1341–1344, 2004. J.J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Transactions on Information Theory, 50(6):1341–1344, 2004.
21.
go back to reference M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary and sufficient conditions for linear convergence of \(\ell _1\)-regularization. Communications on Pure and Applied Mathematics, 64(2):161–182, 2011. M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary and sufficient conditions for linear convergence of \(\ell _1\)-regularization. Communications on Pure and Applied Mathematics, 64(2):161–182, 2011.
22.
go back to reference B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer. A convergence rates result for tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems, 23(3):987, 2007. B. Hofmann, B. Kaltenbacher, C. Poschl, and O. Scherzer. A convergence rates result for tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems, 23(3):987, 2007.
23.
go back to reference S. Levy and P. Fullagar. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics, 46(9):1235–1243, 1981. S. Levy and P. Fullagar. Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution. Geophysics, 46(9):1235–1243, 1981.
24.
go back to reference J. Lindberg. Mathematical concepts of optical superresolution. Journal of Optics, 14(8):083001, 2012. J. Lindberg. Mathematical concepts of optical superresolution. Journal of Optics, 14(8):083001, 2012.
25.
go back to reference D. A. Lorenz and D. Trede. Greedy Deconvolution of Point-like Objects. In Rémi Gribonval, editor, SPARS’09, Saint Malo, France, 2009. D. A. Lorenz and D. Trede. Greedy Deconvolution of Point-like Objects. In Rémi Gribonval, editor, SPARS’09, Saint Malo, France, 2009.
26.
go back to reference J. W. Odendaal, E. Barnard, and C. W. I. Pistorius. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation, 42(10):1386–1391, October 1994. J. W. Odendaal, E. Barnard, and C. W. I. Pistorius. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Transactions on Antennas and Propagation, 42(10):1386–1391, October 1994.
27.
go back to reference S.C. Park, M.K. Park, and M.G. Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 20(3):21–36, 2003. S.C. Park, M.K. Park, and M.G. Kang. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 20(3):21–36, 2003.
28.
go back to reference F. Santosa and W.W. Symes. Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986. F. Santosa and W.W. Symes. Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and Statistical Computing, 7(4):1307–1330, 1986.
29.
go back to reference O. Scherzer and B. Walch. Sparsity regularization for radon measures. In Scale Space and Variational Methods in Computer Vision, volume 5567 of Lecture Notes in Computer Science, pages 452–463. Springer, Berlin Heidelberg, 2009. O. Scherzer and B. Walch. Sparsity regularization for radon measures. In Scale Space and Variational Methods in Computer Vision, volume 5567 of Lecture Notes in Computer Science, pages 452–463. Springer, Berlin Heidelberg, 2009.
30.
go back to reference G. Tang, B. Narayan Bhaskar, and B. Recht. Near minimax line spectral estimation. CoRR, abs/1303.4348, 2013. G. Tang, B. Narayan Bhaskar, and B. Recht. Near minimax line spectral estimation. CoRR, abs/1303.4348, 2013.
31.
go back to reference R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B. Methodological, 58(1):267–288, 1996. R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B. Methodological, 58(1):267–288, 1996.
32.
go back to reference P. Turán. On rational polynomials. Acta Univ. Szeged, Sect. Sci. Math., pages 106–113, 1946. P. Turán. On rational polynomials. Acta Univ. Szeged, Sect. Sci. Math., pages 106–113, 1946.
33.
go back to reference S. Vaiter, G. Peyré, C. Dossal, and J. Fadili. Robust sparse analysis regularization. IEEE Transactions on Information Theory, 59(4):2001–2016, 2013. S. Vaiter, G. Peyré, C. Dossal, and J. Fadili. Robust sparse analysis regularization. IEEE Transactions on Information Theory, 59(4):2001–2016, 2013.
34.
go back to reference P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn. Res., 7:2541–2563, December 2006. P. Zhao and B. Yu. On model selection consistency of Lasso. J. Mach. Learn. Res., 7:2541–2563, December 2006.
Metadata
Title
Exact Support Recovery for Sparse Spikes Deconvolution
Authors
Vincent Duval
Gabriel Peyré
Publication date
01-10-2015
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 5/2015
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-014-9228-6

Other articles of this Issue 5/2015

Foundations of Computational Mathematics 5/2015 Go to the issue

Premium Partner