Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2020 | OriginalPaper | Chapter

Experiencer Detection and Automated Extraction of a Family Disease Tree from Medical Texts in Russian Language

Authors : Ksenia Balabaeva, Sergey Kovalchuk

Published in: Computational Science – ICCS 2020

Publisher: Springer International Publishing

share
SHARE

Abstract

Text descriptions in natural language are an essential part of electronic health records (EHRs). Such descriptions usually contain facts about patient’s life, events, diseases and other relevant information. Sometimes it may also include facts about their family members. In order to find the facts about the right person (experiencer) and convert the unstructured medical text into structured information, we developed a module of experiencer detection. We compared different vector representations and machine learning models to get the highest quality of 0.96 f-score for binary classification and 0.93 f-score for multi-classification. Additionally, we present the results plotting the family disease tree.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Hanauer, D.: Supporting information retrieval from electronic health records: a report of University of Michigan’s nine-year experience in developing and using the electronic medical record search engine (EMERSE). J. Biomed. Inform. 55, 290–300 (2015) CrossRef Hanauer, D.: Supporting information retrieval from electronic health records: a report of University of Michigan’s nine-year experience in developing and using the electronic medical record search engine (EMERSE). J. Biomed. Inform. 55, 290–300 (2015) CrossRef
2.
go back to reference Cesar dos Reis, J., Perciani, E.: Intention-based information retrieval of electronic health records. In: 25th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprise (2016) Cesar dos Reis, J., Perciani, E.: Intention-based information retrieval of electronic health records. In: 25th IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprise (2016)
5.
go back to reference Bill, R., Pakhomov, S., Chen, E.: Automated extraction of family history information from clinical notes. In: AMIA Annual Symposium Proceedings, pp. 1709–1717 (2014) Bill, R., Pakhomov, S., Chen, E.: Automated extraction of family history information from clinical notes. In: AMIA Annual Symposium Proceedings, pp. 1709–1717 (2014)
6.
go back to reference Azab, M., Dadian, S., Nastase, V.: Towards extracting medical family history from natural language interactions: a new dataset and baselines. In: EMNLP/IJCNLP (2019) Azab, M., Dadian, S., Nastase, V.: Towards extracting medical family history from natural language interactions: a new dataset and baselines. In: EMNLP/IJCNLP (2019)
7.
go back to reference Lewis, N., Gruhl, D., Yang, H.: Extracting family history diagnoses from clinical texts. In: BICoB (2011) Lewis, N., Gruhl, D., Yang, H.: Extracting family history diagnoses from clinical texts. In: BICoB (2011)
10.
go back to reference Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: CONFERENCE 2013, Proceedings of the International Conference on Learning Representations, ICLR (2013) Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: CONFERENCE 2013, Proceedings of the International Conference on Learning Representations, ICLR (2013)
11.
go back to reference Mikolov, T., Sutskever, I., Chen, K., Corado, J., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS 2013: Proceedings of the 26th International Conference on Neural Information Processing Systems, vol.2, pp. 3111–3119 (2013) Mikolov, T., Sutskever, I., Chen, K., Corado, J., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS 2013: Proceedings of the 26th International Conference on Neural Information Processing Systems, vol.2, pp. 3111–3119 (2013)
12.
go back to reference Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014) Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)
13.
go back to reference Ganda, R., Mahmood, A.: Deep learning for sentence classification. In: Conference: 2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (2017) Ganda, R., Mahmood, A.: Deep learning for sentence classification. In: Conference: 2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT) (2017)
14.
go back to reference Zhou, Q., Wang, X.: Differentiated attentive representation learning for sentence classification. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018) (2018) Zhou, Q., Wang, X.: Differentiated attentive representation learning for sentence classification. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI 2018) (2018)
Metadata
Title
Experiencer Detection and Automated Extraction of a Family Disease Tree from Medical Texts in Russian Language
Authors
Ksenia Balabaeva
Sergey Kovalchuk
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50423-6_45