Skip to main content
Top
Published in: Mathematical Models and Computer Simulations 4/2023

01-08-2023

Experimental and Numerical Investigation of the Dynamics of Development of Rayleigh–Taylor Instability at Atwood Numbers Close to Unity

Authors: M. D. Bragin, S. Yu. Gus’kov, N. V. Zmitrenko, P. A. Kuchugov, I. G. Lebo, E. V. Levkina, N. V. Nevmerzhitskiy, O. G. Sin’kova, V. P. Statsenko, V. F. Tishkin, I. R. Farin, Yu V. Yanilkin, R. A. Yakhin

Published in: Mathematical Models and Computer Simulations | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents the experimental and numerical results of studying the growth dynamics of the deterministic and given initial perturbations defined in a certain way. The formation, growth, and further evolution of inhomogeneities of the contact boundary occurs due to the development of the Rayleigh–Taylor instability (RTI) at the gas-liquid interface, and in particular (in this study), the air-water interface. The significant difference in the densities of the selected substances leads to a noticeable slowdown in the dynamics of the Kelvin–Helmholtz instability (KHI), which is responsible for the formation of mushroom-like structures, and, as a result, to the longer growth of water jets and the later moment of their destruction and transition to mixing. In this study, a quantitative comparison of the physical data recorded on the original experimental setup, which is described in this paper, with the calculated data obtained using various numerical methods is carried out. The numerical modeling is based on a complete 2D hydrodynamic model for describing the dynamics of the development of the RTI. The surface tension (water-air) and viscosity (water or air) are neglected in this study. The parameters of the development of the instability measured in the experiment and found in the calculations indicate satisfactory agreement between the obtained data. The quantitative results presented in this study justify the use of the classical hydrodynamics model to describe the movements of liquid and gas observed in this experiment and the fairly accurate numerical implementation of the corresponding model in the difference methods used here. The investigation of the development of turbulent mixing depending on well-defined initial conditions and the new regularities of the laws of mixing of the media of different densities that arise in this case is an important element in the study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference H. von Helmholtz, “Über discontinuierliche Flüssigkeits-Bewegungen,” Monatsber. K. Preuss. Akad. Wiss. Berlin 23, 215–228 (1868). H. von Helmholtz, “Über discontinuierliche Flüssigkeits-Bewegungen,” Monatsber. K. Preuss. Akad. Wiss. Berlin 23, 215–228 (1868).
6.
go back to reference Ya. V. Babkin, “Numerical study of turbulent fluid spreading under the action of gravity in shallow river mouths,” Izv. Ross. Akad. Nauk, Mekh, Zhidk. Gaza, No. 3, 172–178 (1999). Ya. V. Babkin, “Numerical study of turbulent fluid spreading under the action of gravity in shallow river mouths,” Izv. Ross. Akad. Nauk, Mekh, Zhidk. Gaza, No. 3, 172–178 (1999).
8.
go back to reference A. V. Gorodnichev, G. V. Dolgoleva, V. A. Zhmailo, E. A. Novikova, and V. P. Statsenko, “Numerical simulation of the interaction of a pulsar wind with the supernova shell in the Crab Nebula,” Tr. RFYaTs-VNIIEF, No. 11, 26–39 (2007). A. V. Gorodnichev, G. V. Dolgoleva, V. A. Zhmailo, E. A. Novikova, and V. P. Statsenko, “Numerical simulation of the interaction of a pulsar wind with the supernova shell in the Crab Nebula,” Tr. RFYaTs-VNIIEF, No. 11, 26–39 (2007).
9.
go back to reference O. B. Drennov, Shear Instability in Media with Strength (RFYaTs-VNIIEF, Sarov, 2014) [in Russian]. O. B. Drennov, Shear Instability in Media with Strength (RFYaTs-VNIIEF, Sarov, 2014) [in Russian].
11.
go back to reference N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, and V. S. Belyaev, “Ejection of heavy elements from the stellar core to the periphery of the cloud of ejecta during a supernova explosion: A possible model of the processes,” J. Exp. Theor. Phys. 118 (3), 384–394 (2014). https://doi.org/10.1134/S1063776114030200CrossRef N. V. Zmitrenko, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, and V. S. Belyaev, “Ejection of heavy elements from the stellar core to the periphery of the cloud of ejecta during a supernova explosion: A possible model of the processes,” J. Exp. Theor. Phys. 118 (3), 384–394 (2014). https://​doi.​org/​10.​1134/​S106377611403020​0CrossRef
12.
go back to reference E. G. Gamalii, V. B. Rozanov, A. A. Samarskii, V. F. Tishkin, N. N. Tyurina, and A. P. Favorskii, “Hydrodynamic stability of compression of spherical laser targets,” Sov. Phys.–JETP 52 (2), 230–237 (1980). E. G. Gamalii, V. B. Rozanov, A. A. Samarskii, V. F. Tishkin, N. N. Tyurina, and A. P. Favorskii, “Hydrodynamic stability of compression of spherical laser targets,” Sov. Phys.–JETP 52 (2), 230–237 (1980).
13.
go back to reference S. A. Bel’kov, S. V. Bondarenko, N. N. Demchenko, S. G. Garanin, S. Yu. Gus’kov, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, and N. V. Zmitrenko, “Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser,” Plasma Phys. Controlled Fusion, 61 (2), 025011 (2019). https://doi.org/10.1088/1361-6587/aaf062CrossRef S. A. Bel’kov, S. V. Bondarenko, N. N. Demchenko, S. G. Garanin, S. Yu. Gus’kov, P. A. Kuchugov, V. B. Rozanov, R. V. Stepanov, R. A. Yakhin, and N. V. Zmitrenko, “Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by a multi-beam megajoule laser,” Plasma Phys. Controlled Fusion, 61 (2), 025011 (2019). https://​doi.​org/​10.​1088/​1361-6587/​aaf062CrossRef
14.
go back to reference E. E. Meshkov, Rayleigh–Taylor Instability. Research of Hydrodynamic Instabilities in Laboratory Experiments (Krasnyi Oktyabr’, Sarov, Saransk, 2002) [in Russian]. E. E. Meshkov, RayleighTaylor Instability. Research of Hydrodynamic Instabilities in Laboratory Experiments (Krasnyi Oktyabr’, Sarov, Saransk, 2002) [in Russian].
15.
go back to reference D. J. Lewis, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II,” Proc. R. Soc. London A 202, 81–96 (1950).CrossRef D. J. Lewis, “The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II,” Proc. R. Soc. London A 202, 81–96 (1950).CrossRef
20.
go back to reference E. Fermi and J. von Neumann, Taylor Instability of Incompressible Liquids, Report AECU-2979 (U. S. Atomic Energy Commission, Technical Information Service, Oak Ridge, TN, 1953). E. Fermi and J. von Neumann, Taylor Instability of Incompressible Liquids, Report AECU-2979 (U. S. Atomic Energy Commission, Technical Information Service, Oak Ridge, TN, 1953).
21.
go back to reference G. Birkhoff, Taylor Instability and Laminar Mixing, Report LA-1862 (Los Alamos Scientific Laboratory, University of California, Los Alamos, 1955). G. Birkhoff, Taylor Instability and Laminar Mixing, Report LA-1862 (Los Alamos Scientific Laboratory, University of California, Los Alamos, 1955).
24.
go back to reference N. V. Zmitrenko, N. G. Proncheva, and V. B. Rozanov, “An evolutionary model of a turbulent mixing layer,” Preprint No. 65 (FIAN, Moscow, 1997) [in Russian]. N. V. Zmitrenko, N. G. Proncheva, and V. B. Rozanov, “An evolutionary model of a turbulent mixing layer,” Preprint No. 65 (FIAN, Moscow, 1997) [in Russian].
26.
go back to reference I. G. Lebo, V. V. Nikishin, V. B. Rozanov, and V. F. Tishkin, “Numerical simulation of evolution of multimode initial perturbations in the development of Richtmyer–Meshkov instabilities,” J. Russ. Laser Res. 19 (5), 483–504 (1998). https://doi.org/10.1007/BF03380145CrossRef I. G. Lebo, V. V. Nikishin, V. B. Rozanov, and V. F. Tishkin, “Numerical simulation of evolution of multimode initial perturbations in the development of Richtmyer–Meshkov instabilities,” J. Russ. Laser Res. 19 (5), 483–504 (1998). https://​doi.​org/​10.​1007/​BF03380145CrossRef
28.
go back to reference S. Z. Belen’kii and E. S. Fradkin, “Theory of turbulent mixing,” Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 29, 207–238 (1965). S. Z. Belen’kii and E. S. Fradkin, “Theory of turbulent mixing,” Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 29, 207–238 (1965).
30.
go back to reference Yu. A. Kucherenko, S. I. Balabin, N. N. Anuchina, V. I. Volkov, R. I. Ardashova, O. E. Kozelkov, A. V. Dulov, and L. A. Romanov, “Experimental investigation into periodic perturbation development against turbulent mixing about the contact boundary of heterodense liquids,” in Proc. 7th Int. Workshop on the Physics of Compressible Turbulent Mixing (WPCTM7) (St. Petersburg, 1999), pp. 75–79. Yu. A. Kucherenko, S. I. Balabin, N. N. Anuchina, V. I. Volkov, R. I. Ardashova, O. E. Kozelkov, A. V. Dulov, and L. A. Romanov, “Experimental investigation into periodic perturbation development against turbulent mixing about the contact boundary of heterodense liquids,” in Proc. 7th Int. Workshop on the Physics of Compressible Turbulent Mixing (WPCTM7) (St. Petersburg, 1999), pp. 75–79.
31.
go back to reference A. N. Aleshin, E. V. Lazareva, S. G. Zaitsev, V. B. Rozanov, E. G. Gamalii, and I. G. Lebo, “A study of linear, nonlinear and transition stages of Richtmyer–Meshkov instability,” Dokl. Math. 35 (2), 177–180 (1990). A. N. Aleshin, E. V. Lazareva, S. G. Zaitsev, V. B. Rozanov, E. G. Gamalii, and I. G. Lebo, “A study of linear, nonlinear and transition stages of Richtmyer–Meshkov instability,” Dokl. Math. 35 (2), 177–180 (1990).
34.
go back to reference G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y.-N. Young, and M. Zingale, “A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration,” Phys. Fluids 16, 1668–1693 (2004). https://doi.org/10.1063/1.1688328CrossRefMATH G. Dimonte, D. L. Youngs, A. Dimits, S. Weber, M. Marinak, S. Wunsch, C. Garasi, A. Robinson, M. J. Andrews, P. Ramaprabhu, A. C. Calder, B. Fryxell, J. Biello, L. Dursi, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. Timmes, H. Tufo, Y.-N. Young, and M. Zingale, “A comparative study of the turbulent Rayleigh–Taylor instability using high-resolution three-dimensional numerical simulations: The Alpha-Group collaboration,” Phys. Fluids 16, 1668–1693 (2004). https://​doi.​org/​10.​1063/​1.​1688328CrossRefMATH
35.
go back to reference B. Thornber, J. Griffond, O. Poujade, N. Attal, H. Varshochi, P. Bigdelou, P. Ramaprabhu, B. Olson, J. Greenough, Y. Zhou, O. Schilling, K. A. Garside, R. J. R. Williams, C. A. Batha, P. A. Kuchugov, M. E. La-donkina, V. F. Tishkin, N. V. Zmitrenko, V. B. Rozanov, and D. L. Youngs, “Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: The θ-group collaboration,” Phys. Fluids 29, 105107 (2017). https://doi.org/10.1063/1.4993464CrossRef B. Thornber, J. Griffond, O. Poujade, N. Attal, H. Varshochi, P. Bigdelou, P. Ramaprabhu, B. Olson, J. Greenough, Y. Zhou, O. Schilling, K. A. Garside, R. J. R. Williams, C. A. Batha, P. A. Kuchugov, M. E. La-donkina, V. F. Tishkin, N. V. Zmitrenko, V. B. Rozanov, and D. L. Youngs, “Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer–Meshkov instability: The θ-group collaboration,” Phys. Fluids 29, 105107 (2017). https://​doi.​org/​10.​1063/​1.​4993464CrossRef
36.
go back to reference A. A. Tyaktev, A. V. Pavlenko., N. B. Anikin, Yu. A. Piskunov, I. L. Bugaenko, A. M. Andreev, and S. S. Mokrushin, Experimental Study of the Characteristics of the Zone of Turbulent Mixing of Gaseous Media Caused by the Rayleigh–Taylor Instability at Atwood Numbers 0.2 and 0.8 (RFYaTs-VNIITF, Snezhinsk, Chelyabinsk oblast, 2015) [in Russian]. A. A. Tyaktev, A. V. Pavlenko., N. B. Anikin, Yu. A. Piskunov, I. L. Bugaenko, A. M. Andreev, and S. S. Mokrushin, Experimental Study of the Characteristics of the Zone of Turbulent Mixing of Gaseous Media Caused by the RayleighTaylor Instability at Atwood Numbers 0.2 and 0.8 (RFYaTs-VNIITF, Snezhinsk, Chelyabinsk oblast, 2015) [in Russian].
37.
go back to reference J. W. Jacobs, M. A. Jones, and C. E. Niederhaus, “Experimental Studies of RichtmyerMeshkov Instability,” in Proc. 5th Int. Workshop on the Physics of Compressible Turbulent Mixing (WPCTM5) (Stony Brook, NY, July 1995), pp. 195‑202. J. W. Jacobs, M. A. Jones, and C. E. Niederhaus, “Experimental Studies of RichtmyerMeshkov Instability,” in Proc. 5th Int. Workshop on the Physics of Compressible Turbulent Mixing (WPCTM5) (Stony Brook, NY, July 1995), pp. 195‑202.
38.
go back to reference N. V. Nevmerzhitskii, Hydrodynamic Instabilities and Turbulent Mixing of Substances. Laboratory Simulation, Ed. by A. L. Mikhailov (RFYaTs-VNIIEF, Sarov, Nizhny Novgorod oblast, 2018) [in Russian]. N. V. Nevmerzhitskii, Hydrodynamic Instabilities and Turbulent Mixing of Substances. Laboratory Simulation, Ed. by A. L. Mikhailov (RFYaTs-VNIIEF, Sarov, Nizhny Novgorod oblast, 2018) [in Russian].
39.
go back to reference L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, New York, 1987). L. D. Landau and E. M. Lifschitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, New York, 1987).
40.
go back to reference K. V. Vyaznikov, V. F. Tishkin, and A. P. Favorski, “Construction of monotone high resolution difference schemes for hyperbolic systems,” Mat. Model. 1 (5), 95–120 (1989).MathSciNetMATH K. V. Vyaznikov, V. F. Tishkin, and A. P. Favorski, “Construction of monotone high resolution difference schemes for hyperbolic systems,” Mat. Model. 1 (5), 95–120 (1989).MathSciNetMATH
41.
go back to reference V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorski, “Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability,” Mat. Model. 7 (5), 15–25 (1995). V. F. Tishkin, V. V. Nikishin, I. V. Popov, and A. P. Favorski, “Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability,” Mat. Model. 7 (5), 15–25 (1995).
42.
go back to reference I. G. Lebo and V. F. Tishkin, Investigation of Hydrodynamic Instability in Problems of Laser Thermonuclear Fusion by Mathematical Modeling Methods (Fizmatlit, Moscow, 2006) {in Russian]. I. G. Lebo and V. F. Tishkin, Investigation of Hydrodynamic Instability in Problems of Laser Thermonuclear Fusion by Mathematical Modeling Methods (Fizmatlit, Moscow, 2006) {in Russian].
45.
go back to reference Yu. V. Yanilkin, S. P. Belyaev, Yu. A. Bondarenko, E. S. Gavrilova, E. A. Goncharov, A. D. Gorbenko, A. V. Gorodnichev, E. V. Gubkov, A. R. Guzhova, L. I. Degtyarenko, G. V. Zharova, V. Yu. Kolobyanin, V. N. Sofronov, A. L. Stadnik, N. A. Khovrin, O. N. Chernyshova, I. N. Chistyakova, and V. N. Shemyakov, “Eulerian numerical techniques EGAK and TREK for simulation of multidimensional multimaterial flows,” Tr. RFYaTs-VNIIEF, No. 12, 54–65 (2008). Yu. V. Yanilkin, S. P. Belyaev, Yu. A. Bondarenko, E. S. Gavrilova, E. A. Goncharov, A. D. Gorbenko, A. V. Gorodnichev, E. V. Gubkov, A. R. Guzhova, L. I. Degtyarenko, G. V. Zharova, V. Yu. Kolobyanin, V. N. Sofronov, A. L. Stadnik, N. A. Khovrin, O. N. Chernyshova, I. N. Chistyakova, and V. N. Shemyakov, “Eulerian numerical techniques EGAK and TREK for simulation of multidimensional multimaterial flows,” Tr. RFYaTs-VNIIEF, No. 12, 54–65 (2008).
46.
go back to reference Yu. V. Yanilkin, “Numerical study of the interrelation of turbulent mixing area and local disturbances of interface in the gravitational turbulent mixing problem,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 3, 3–18 (2019). Yu. V. Yanilkin, “Numerical study of the interrelation of turbulent mixing area and local disturbances of interface in the gravitational turbulent mixing problem,” Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 3, 3–18 (2019).
47.
go back to reference V. P. Statsenko, Yu. V. Yanilkin, O. G. Sin’kova, and A. L. Stadnik, “The degree of homogeneous mixing according to the results of 3D numerical calculations of gravitational turbulent mixing,” Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., Nos. 2–3, 32–40 (2007). V. P. Statsenko, Yu. V. Yanilkin, O. G. Sin’kova, and A. L. Stadnik, “The degree of homogeneous mixing according to the results of 3D numerical calculations of gravitational turbulent mixing,” Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., Nos. 2–3, 32–40 (2007).
Metadata
Title
Experimental and Numerical Investigation of the Dynamics of Development of Rayleigh–Taylor Instability at Atwood Numbers Close to Unity
Authors
M. D. Bragin
S. Yu. Gus’kov
N. V. Zmitrenko
P. A. Kuchugov
I. G. Lebo
E. V. Levkina
N. V. Nevmerzhitskiy
O. G. Sin’kova
V. P. Statsenko
V. F. Tishkin
I. R. Farin
Yu V. Yanilkin
R. A. Yakhin
Publication date
01-08-2023
Publisher
Pleiades Publishing
Published in
Mathematical Models and Computer Simulations / Issue 4/2023
Print ISSN: 2070-0482
Electronic ISSN: 2070-0490
DOI
https://doi.org/10.1134/S2070048223040038

Other articles of this Issue 4/2023

Mathematical Models and Computer Simulations 4/2023 Go to the issue

Premium Partner