Skip to main content
Top
Published in: Journal of Materials Science 18/2016

10-06-2016 | Original Paper

Experimental characterization of nanocrystalline niobium-doped nickel–zinc ferrites: occurrence of superparamagnetism

Authors: Ch. S. Lakshmi, Ch. S. L. N. Sridhar, G. Govindraj, S. Bangarraju, D. M. Potukuchi

Published in: Journal of Materials Science | Issue 18/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Structural, morphological, magnetic, and dielectric investigations are carried out in Nb-doped (viz., for x equal to 0.0–0.4 by wt%) nanocrystalline Ni–Zn ferrites synthesized by hydrothermal method. XRD, IR studies infer the growth of nano structures and Fe2O3 phase. Nb ions segregate at grain boundaries. Crystallite size (D) varies from 62 to 18 nm with x. FTIR absorption exhibits split at higher x. Saturation magnetization witnesses an overall decrease with x. Trends of M s(x) are explained by nature of dopant, preferential replacement, surface canting (YK angles) and lattice contraction. Variations of coercive field (H c) and D infer single-domain to multi-domain morphological transformation. Occurrence of superparamagnetism (SPM) is predicted for zeroed values of H cand for a critical concentration x crit equal to 0.321. Enhanced Nb5+–Fe2+ binding with dopant (x up to 0.2) results for decrease in dielectric constant \( \varepsilon^{\prime}_{r} \), loss factor tanδ and increase in resistivity ρ. Lowered ac conductivity is attributed to blockade of path by Nb5+ ions in the vicinity of B-sites. Relatively higher ρ (~108 Ω cm) and lower loss (tanδ ~10−2–10−3) evinced for 10 kHz. Enhanced core loss is realized with x manifested as lowered H c and tanδ to usher their utility in high-frequency applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ott G, Wrba J, Lucke R (2003) Recent developments of Mn–Zn ferrites for high permeability applications. J Magn Magn Mater 254:535–537CrossRef Ott G, Wrba J, Lucke R (2003) Recent developments of Mn–Zn ferrites for high permeability applications. J Magn Magn Mater 254:535–537CrossRef
2.
go back to reference Deka S, Joy PA (2007) Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J Am Ceram Soc 90:1494–1499CrossRef Deka S, Joy PA (2007) Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J Am Ceram Soc 90:1494–1499CrossRef
3.
go back to reference Batlle X, Perez N, Guardia P, Iglesias O, Labarta A, Bartolome F, Garcia LM, Bartolome J, Roca AG, Morales MP, Serna CJ (2011) Magnetic nanoparticles with bulklike properties (invited). J Phys D Appl Phys 109:07B524–07B526 Batlle X, Perez N, Guardia P, Iglesias O, Labarta A, Bartolome F, Garcia LM, Bartolome J, Roca AG, Morales MP, Serna CJ (2011) Magnetic nanoparticles with bulklike properties (invited). J Phys D Appl Phys 109:07B524–07B526
4.
go back to reference Lavcevic ML, Turkovic A (2002) The measurements of particle/crystallite size in nanostructured TiO2 films by SAXS/WAXD method. Scr Mater 46:501–509CrossRef Lavcevic ML, Turkovic A (2002) The measurements of particle/crystallite size in nanostructured TiO2 films by SAXS/WAXD method. Scr Mater 46:501–509CrossRef
5.
go back to reference Tartaj P, Morales MDP, Veraguer SV, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197CrossRef Tartaj P, Morales MDP, Veraguer SV, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197CrossRef
6.
go back to reference Im SH, Herricks T, Lee YT, Xia Y (2005) Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett 40:19–23CrossRef Im SH, Herricks T, Lee YT, Xia Y (2005) Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett 40:19–23CrossRef
7.
go back to reference Khanna SK, Linderoth S (1991) Magnetic behavior of clusters of ferromagnetic transition metals. Phys Rev Lett 67:742–745CrossRef Khanna SK, Linderoth S (1991) Magnetic behavior of clusters of ferromagnetic transition metals. Phys Rev Lett 67:742–745CrossRef
8.
go back to reference Qi Chen, Zhang ZJ (1998) Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Appl Phys Lett 73:3156–3158CrossRef Qi Chen, Zhang ZJ (1998) Size-dependent superparamagnetic properties of MgFe2O4 spinel ferrite nanocrystallites. Appl Phys Lett 73:3156–3158CrossRef
9.
go back to reference George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol–gel prepared Li0.5Fe2.5O4 fine particles. J Phys D Appl Phys 39:900–910CrossRef
10.
go back to reference Kale A, Nathani H, Srivastava RS, Misra RDK (2004) Superparamagnetic behavior of nanocrystalline Ni–Zn, Zn–Mn and Ni–Mn ferrites processed by reverse micelle method. Mater Sci Technol 20:999–1005CrossRef Kale A, Nathani H, Srivastava RS, Misra RDK (2004) Superparamagnetic behavior of nanocrystalline Ni–Zn, Zn–Mn and Ni–Mn ferrites processed by reverse micelle method. Mater Sci Technol 20:999–1005CrossRef
11.
go back to reference Marand ZR, Farimani MHR, Shahtahmasebi N (2014) Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical applications. Nanomed J 1:238–249 Marand ZR, Farimani MHR, Shahtahmasebi N (2014) Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical applications. Nanomed J 1:238–249
12.
go back to reference Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, Hong CY (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283:210–214CrossRef Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, Hong CY (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283:210–214CrossRef
13.
go back to reference Lee SW, Kim CS (2006) Superparamagnetic properties Ni–Zn ferrite for nano-bio fusion applications. J Magn Magn Mater 304:e418–e420CrossRef Lee SW, Kim CS (2006) Superparamagnetic properties Ni–Zn ferrite for nano-bio fusion applications. J Magn Magn Mater 304:e418–e420CrossRef
14.
go back to reference Sertkol M, Köseoˇglu Y, Baykal A, Kavas H, Toprak MS (2010) Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J Magn Magn Mater 322:866–871CrossRef Sertkol M, Köseoˇglu Y, Baykal A, Kavas H, Toprak MS (2010) Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J Magn Magn Mater 322:866–871CrossRef
15.
go back to reference Verma A, Goel TC, Mendiratta RG, Alam MI (1999) Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater Sci Eng B 60:156–162CrossRef Verma A, Goel TC, Mendiratta RG, Alam MI (1999) Dielectric properties of NiZn ferrites prepared by the citrate precursor method. Mater Sci Eng B 60:156–162CrossRef
16.
go back to reference Arcos D, Vazquez M (1999) Grain boundary impedance of doped Mn–Zn ferrites. J Mater Res 14:861–865CrossRef Arcos D, Vazquez M (1999) Grain boundary impedance of doped Mn–Zn ferrites. J Mater Res 14:861–865CrossRef
17.
go back to reference Rao ADP, Raju SB, Vadera SR, Sharma DR (2003) Mössbauer studies of Sn4+/Nb5+ substituted Mn–Zn ferrites. Bull Mater Sci 26:505–507CrossRef Rao ADP, Raju SB, Vadera SR, Sharma DR (2003) Mössbauer studies of Sn4+/Nb5+ substituted Mn–Zn ferrites. Bull Mater Sci 26:505–507CrossRef
18.
go back to reference Chen SH, Tsay CY, Chang SC, Liu KS, and Lin IN (2000) Proceedings of ICF’8, Kyoto and Tokyo Japan, p. 573 Chen SH, Tsay CY, Chang SC, Liu KS, and Lin IN (2000) Proceedings of ICF’8, Kyoto and Tokyo Japan, p. 573
19.
go back to reference Sai Lakshmi K, Ramesh B, Rao ADP, Rao PRM, Raju SB (1998) Effect of Sb5+/Mo6+ on magnetic properties of Mn–Zn ferrites. J Mag Soc Jpn 22:37–39 Sai Lakshmi K, Ramesh B, Rao ADP, Rao PRM, Raju SB (1998) Effect of Sb5+/Mo6+ on magnetic properties of Mn–Zn ferrites. J Mag Soc Jpn 22:37–39
20.
go back to reference Chen SH, Chang SC, Tsay CY, Liu KS, Lin IN (2001) Improvement on magnetic power loss of MnZn–ferrite materials by V2O5 and Nb2O5 co-doping. J Eur Ceram Soc 21:1931–1935CrossRef Chen SH, Chang SC, Tsay CY, Liu KS, Lin IN (2001) Improvement on magnetic power loss of MnZn–ferrite materials by V2O5 and Nb2O5 co-doping. J Eur Ceram Soc 21:1931–1935CrossRef
21.
go back to reference Lakshmi ChS, Sridhar ChSLN, Govindraj G, Bangarraju S, Potukuchi DM (2015) Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel–zinc ferrites. Physica B 459:97–104CrossRef Lakshmi ChS, Sridhar ChSLN, Govindraj G, Bangarraju S, Potukuchi DM (2015) Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel–zinc ferrites. Physica B 459:97–104CrossRef
22.
go back to reference Calvin S, Carpenter EE, Harris VG, Morrison SA (2002) Multiedge refinement of extended X-ray-absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev B 66:224405–224417CrossRef Calvin S, Carpenter EE, Harris VG, Morrison SA (2002) Multiedge refinement of extended X-ray-absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev B 66:224405–224417CrossRef
23.
go back to reference Mishra S, Karak N, Kundu T, Das D, Maity N, Chakravorty D (2006) Nanocrystalline nickel ferrites prepared by doping with niobium ions. Mater Lett 60:1111–1115CrossRef Mishra S, Karak N, Kundu T, Das D, Maity N, Chakravorty D (2006) Nanocrystalline nickel ferrites prepared by doping with niobium ions. Mater Lett 60:1111–1115CrossRef
24.
go back to reference Pal M, Chakravorty D (2003) Nanocrystalline magnetic alloys and ceramics. Sadhana 28:283–297CrossRef Pal M, Chakravorty D (2003) Nanocrystalline magnetic alloys and ceramics. Sadhana 28:283–297CrossRef
25.
go back to reference Chargles J, ’Connor NO, Kolesnichenko E, Carpenter C, Zheu S, Kumbhar A, Jessica S, Fabrice A (2001) Fabrication and properties of magnetic particles with nanometer dimensions. Synth Metal 122:547–555CrossRef Chargles J, ’Connor NO, Kolesnichenko E, Carpenter C, Zheu S, Kumbhar A, Jessica S, Fabrice A (2001) Fabrication and properties of magnetic particles with nanometer dimensions. Synth Metal 122:547–555CrossRef
26.
go back to reference Fu YP, Lin CH (2002) Microwave-induced combustion synthesis of Ni–Zn ferrite powder and its characterization. J Magn Magn Mater 251:74–79CrossRef Fu YP, Lin CH (2002) Microwave-induced combustion synthesis of Ni–Zn ferrite powder and its characterization. J Magn Magn Mater 251:74–79CrossRef
27.
go back to reference Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRef Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRef
28.
go back to reference Baykal A, Kasapoglu N, Koseoglu YK, Toprak MS, Bayrakdar H (2008) CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J Alloys Compd 464:514–518CrossRef Baykal A, Kasapoglu N, Koseoglu YK, Toprak MS, Bayrakdar H (2008) CTAB-assisted hydrothermal synthesis of NiFe2O4 and its magnetic characterization. J Alloys Compd 464:514–518CrossRef
29.
go back to reference Gu Y, Shang S, Huang K, Liu J (2000) Synthesis of MnZn ferrite nanoscale particles by hydrothermal method. J Cent South Univ Technol 7:37–39CrossRef Gu Y, Shang S, Huang K, Liu J (2000) Synthesis of MnZn ferrite nanoscale particles by hydrothermal method. J Cent South Univ Technol 7:37–39CrossRef
30.
go back to reference Rao BP, Rao KH, Trinadh K, Caltun OF (2004) Dielectric behaviour of niobium doped Ni–Zn ferrites. J Optoelectron Adv Mater 6:951–954 Rao BP, Rao KH, Trinadh K, Caltun OF (2004) Dielectric behaviour of niobium doped Ni–Zn ferrites. J Optoelectron Adv Mater 6:951–954
31.
go back to reference Rao BP, Caltun O, Dumitru I, Spinu L (2006) Complex permeability spectra of Ni–Zn ferrites doped with V2O5/Nb2O5. J Magn Magn Mater 304:e749–e751CrossRef Rao BP, Caltun O, Dumitru I, Spinu L (2006) Complex permeability spectra of Ni–Zn ferrites doped with V2O5/Nb2O5. J Magn Magn Mater 304:e749–e751CrossRef
33.
go back to reference Sun K, Lan Z, Yu Z, Li L, Huang J (2008) Grain growth and magnetic properties of Nb2O5-doped NiZn ferrites. Jpn J Appl Phys 47:7871–7875CrossRef Sun K, Lan Z, Yu Z, Li L, Huang J (2008) Grain growth and magnetic properties of Nb2O5-doped NiZn ferrites. Jpn J Appl Phys 47:7871–7875CrossRef
34.
go back to reference Pillai SO (1995) Solid state physics, 5th edn. New Age International Publishers, New Delhi Pillai SO (1995) Solid state physics, 5th edn. New Age International Publishers, New Delhi
35.
go back to reference Islam M A, Ahmad I and Abbas T (1999) Proceedings of the Sixth International Symposium of Advanced Materials, p. 155 Islam M A, Ahmad I and Abbas T (1999) Proceedings of the Sixth International Symposium of Advanced Materials, p. 155
36.
go back to reference Rajesh Ch, Lakshmi V, Govindaraj G (2012) Electrical relaxation studies of solution combustion synthesized nanocrystalline Li2NiZrO4 material. Mater Sci Eng B177:771–779 Rajesh Ch, Lakshmi V, Govindaraj G (2012) Electrical relaxation studies of solution combustion synthesized nanocrystalline Li2NiZrO4 material. Mater Sci Eng B177:771–779
37.
go back to reference Snelling EC (1989) Soft ferrites: properties and applications, 2nd edn. Butter-Worth and Co. Ltd., London Snelling EC (1989) Soft ferrites: properties and applications, 2nd edn. Butter-Worth and Co. Ltd., London
38.
go back to reference Duquea JGS, Souzaa EA, Menesesa CT, Kubota L (2007) Physica B 398:287–290CrossRef Duquea JGS, Souzaa EA, Menesesa CT, Kubota L (2007) Physica B 398:287–290CrossRef
39.
go back to reference Rana MU, Ul-Islam M, Ahmad I, Abbas T (1999) Dielectric behavior in Ni–Zn ferrite. J Magn Magn Mater 187:242–246CrossRef Rana MU, Ul-Islam M, Ahmad I, Abbas T (1999) Dielectric behavior in Ni–Zn ferrite. J Magn Magn Mater 187:242–246CrossRef
40.
go back to reference Murthy NSS, Natera MG, Youssef SI, Begum RJ (1969) Yafet–Kittel angles in zinc–nickel ferrites. Phys Rev 181:969–977CrossRef Murthy NSS, Natera MG, Youssef SI, Begum RJ (1969) Yafet–Kittel angles in zinc–nickel ferrites. Phys Rev 181:969–977CrossRef
41.
go back to reference Jonscher AK, Chelsea (1983) Dielectric relaxation in solids, Dielectrics Press Ltd, 33 Lynwood Road, London W5 1JQ Jonscher AK, Chelsea (1983) Dielectric relaxation in solids, Dielectrics Press Ltd, 33 Lynwood Road, London W5 1JQ
42.
go back to reference Cheruku R, Govindraj G, Vijayan L (2013) Ion dynamics in sol–gel synthesized Li2Ni1−x Mg x TiO4 nanocrystallites. Mater Chem Phys 141:620–628CrossRef Cheruku R, Govindraj G, Vijayan L (2013) Ion dynamics in sol–gel synthesized Li2Ni1−x Mg x TiO4 nanocrystallites. Mater Chem Phys 141:620–628CrossRef
43.
go back to reference Bayliss P, Erd DC, More ME, Sabina A, Smith DK (1986) Mineral powder diffraction. JCPDS, USA Bayliss P, Erd DC, More ME, Sabina A, Smith DK (1986) Mineral powder diffraction. JCPDS, USA
44.
go back to reference Rao ADP, Ramesh B, Rao PRM, Raju SB (1999) Magnetic and microstructural properties of Sn/Nb substituted Mn–Zn ferrites. J Alloy Compd 282:268–273CrossRef Rao ADP, Ramesh B, Rao PRM, Raju SB (1999) Magnetic and microstructural properties of Sn/Nb substituted Mn–Zn ferrites. J Alloy Compd 282:268–273CrossRef
45.
go back to reference Inaba H, Abe T, Kitano Y, Shimomura J (1994) Magnetic properties and the grain boundary structure of Mn–Zn ferrites with the addition of Nb2O5. J Magn Magn Mater 133:487–489CrossRef Inaba H, Abe T, Kitano Y, Shimomura J (1994) Magnetic properties and the grain boundary structure of Mn–Zn ferrites with the addition of Nb2O5. J Magn Magn Mater 133:487–489CrossRef
46.
go back to reference Yan MF, Johnson JRDW (1978) Impurity-induced exaggerated grain growth in Mn-Zn ferrites. J Am Cerm Soc 61: 342–349CrossRef Yan MF, Johnson JRDW (1978) Impurity-induced exaggerated grain growth in Mn-Zn ferrites. J Am Cerm Soc 61: 342–349CrossRef
47.
go back to reference Whinfrey CG, Eckart DW, Tauber A (1960) Preparation and X-ray diffraction data for some rare earth stannates. J Am Chem Soc 82:2695–2697CrossRef Whinfrey CG, Eckart DW, Tauber A (1960) Preparation and X-ray diffraction data for some rare earth stannates. J Am Chem Soc 82:2695–2697CrossRef
48.
go back to reference Shannon RD (1976) Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides. Acta Cryst A 32:751–767CrossRef Shannon RD (1976) Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides. Acta Cryst A 32:751–767CrossRef
49.
go back to reference Lide DR (1995) CRC handbook of chemistry and physics, 76th edn. CRC Press, London Lide DR (1995) CRC handbook of chemistry and physics, 76th edn. CRC Press, London
50.
51.
go back to reference Shaikh AM, Jadhav SA, Watawe SC, Chougule BK (2000) Infrared spectral studies of Zn-substituted Li–Mg ferrites. Mater Lett 44:192–196CrossRef Shaikh AM, Jadhav SA, Watawe SC, Chougule BK (2000) Infrared spectral studies of Zn-substituted Li–Mg ferrites. Mater Lett 44:192–196CrossRef
52.
go back to reference Gosalves LR, Mojumdar SC, Verenkar VMS (2012) Synthesis and characterization of ultrafine spinel ferrite obtained by precursor combustion technique. J Therm Anal Calorim 108:859–863CrossRef Gosalves LR, Mojumdar SC, Verenkar VMS (2012) Synthesis and characterization of ultrafine spinel ferrite obtained by precursor combustion technique. J Therm Anal Calorim 108:859–863CrossRef
53.
go back to reference Evans BJ, Hafner S (1968) Mössbauer resonance of Fe57 in oxidic spinels containing Cu and Fe. J Phys Chem Sol 29:1573–1588CrossRef Evans BJ, Hafner S (1968) Mössbauer resonance of Fe57 in oxidic spinels containing Cu and Fe. J Phys Chem Sol 29:1573–1588CrossRef
54.
go back to reference Srinivasan TT, Srivastava CM, Venkata Ramani N, Patni MJ (1984) Infrared absorption in spinel ferrites. Bull Mater Sci 6:1063–1078CrossRef Srinivasan TT, Srivastava CM, Venkata Ramani N, Patni MJ (1984) Infrared absorption in spinel ferrites. Bull Mater Sci 6:1063–1078CrossRef
55.
go back to reference Dey S, Roy A, Das D, Ghose J (2004) Preparation and characterization of nanocrystalline disordered lithium ferrite by citrate precursor method. J Magn Magn Mater 270:224–229CrossRef Dey S, Roy A, Das D, Ghose J (2004) Preparation and characterization of nanocrystalline disordered lithium ferrite by citrate precursor method. J Magn Magn Mater 270:224–229CrossRef
56.
go back to reference Neel L (1948) The magnetic properties of ferrites-ferrimagnetism and antiferrimagnetism. Ann Phys 3:137–198 Neel L (1948) The magnetic properties of ferrites-ferrimagnetism and antiferrimagnetism. Ann Phys 3:137–198
57.
go back to reference Craik DJ (1975) Magnetic oxide: I. Wiley, New York Craik DJ (1975) Magnetic oxide: I. Wiley, New York
58.
go back to reference Suryawanshi SS, Deshpande V, Sawant SR (1999) XRD analysis and bulk magnetic properties of Al3+ substituted Cu–Cd ferrites. J Mater Chem Phys 59:199–203CrossRef Suryawanshi SS, Deshpande V, Sawant SR (1999) XRD analysis and bulk magnetic properties of Al3+ substituted Cu–Cd ferrites. J Mater Chem Phys 59:199–203CrossRef
59.
go back to reference Urvi V, Bimal S, Kulkarni R (1999) Magnetic properties of the mixed spinel NiAl2x Cr x Fe2−3x O4. Physica B 262:5–12CrossRef Urvi V, Bimal S, Kulkarni R (1999) Magnetic properties of the mixed spinel NiAl2x Cr x Fe2−3x O4. Physica B 262:5–12CrossRef
60.
go back to reference Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394–397CrossRef Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394–397CrossRef
61.
go back to reference Younas M, Atif M, Nadeem M, Siddique M, Idrees M, Grossinger R (2011) Colossal resistivity with diminished tangent loss in Zn–Ni ferrite nanoparticles. J Phys D Appl Phys 44:345402–345409CrossRef Younas M, Atif M, Nadeem M, Siddique M, Idrees M, Grossinger R (2011) Colossal resistivity with diminished tangent loss in Zn–Ni ferrite nanoparticles. J Phys D Appl Phys 44:345402–345409CrossRef
62.
go back to reference Li X, Wang G (2009) Low-temperature synthesis and growth of super paramagnetic Zn0.5Ni0.5Fe2O4 nanosized particles. J Magn Magn Mater 321:1276–1279CrossRef Li X, Wang G (2009) Low-temperature synthesis and growth of super paramagnetic Zn0.5Ni0.5Fe2O4 nanosized particles. J Magn Magn Mater 321:1276–1279CrossRef
63.
64.
go back to reference Mahesh Kumar A, Varma MC, Dube CL, Rao KH, Kashyap SC (2008) Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity. J Magn Magn Mater 320:1995–2000CrossRef Mahesh Kumar A, Varma MC, Dube CL, Rao KH, Kashyap SC (2008) Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity. J Magn Magn Mater 320:1995–2000CrossRef
65.
go back to reference Rao BP, Caltun O, Cho WS, Kim C, Kim Ch (2007) Synthesis and characterization of mixed ferrite nanoparticles. J Magn Magn Mater 310:e812–e814CrossRef Rao BP, Caltun O, Cho WS, Kim C, Kim Ch (2007) Synthesis and characterization of mixed ferrite nanoparticles. J Magn Magn Mater 310:e812–e814CrossRef
66.
go back to reference Naughton BT, Clarke R (2007) Lattice expansion and saturation magnetization of nickel–zinc ferrite nanoparticles prepared by aqueous precipitation. J Am Ceram Soc 90:3541–3546CrossRef Naughton BT, Clarke R (2007) Lattice expansion and saturation magnetization of nickel–zinc ferrite nanoparticles prepared by aqueous precipitation. J Am Ceram Soc 90:3541–3546CrossRef
67.
go back to reference Weisz RS (1951) Interatomic distances and ferromagnetism in spinels. Phys Rev 84:379CrossRef Weisz RS (1951) Interatomic distances and ferromagnetism in spinels. Phys Rev 84:379CrossRef
68.
go back to reference Jacob J, Abdul KM (2010) Investigation of mixed spinel structure of nanostructured nickel ferrite. J Appl Phys 107:114310–114316CrossRef Jacob J, Abdul KM (2010) Investigation of mixed spinel structure of nanostructured nickel ferrite. J Appl Phys 107:114310–114316CrossRef
69.
go back to reference Nedkov I, Vandenberghe RE, Zaleski A (2010) Surface magnetic disorder in nanostructured Ni0.5Zn0.5Fe2O4 particles. J Magn Magn Mater 322:2732–2736CrossRef Nedkov I, Vandenberghe RE, Zaleski A (2010) Surface magnetic disorder in nanostructured Ni0.5Zn0.5Fe2O4 particles. J Magn Magn Mater 322:2732–2736CrossRef
70.
go back to reference Younas M, Nadeem M, Atif M, Grossinger RJ (2011) Metal–semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J Appl Phys 109:093704–093708CrossRef Younas M, Nadeem M, Atif M, Grossinger RJ (2011) Metal–semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J Appl Phys 109:093704–093708CrossRef
71.
go back to reference Cullity BD (1974) Introduction to magnetic materials. Addison-Wesley, Reading Cullity BD (1974) Introduction to magnetic materials. Addison-Wesley, Reading
72.
73.
go back to reference Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–125CrossRef Koops CG (1951) On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys Rev 83:121–125CrossRef
74.
go back to reference Iwauchi K (1971) Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn Appl Phys 10:1520–1528CrossRef Iwauchi K (1971) Dielectric properties of fine particles of Fe3O4 and some ferrites. Jpn Appl Phys 10:1520–1528CrossRef
75.
go back to reference Verma A, Goel TC, Mendiratta RG, Kishan P (2000) Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J Magn Magn Mater 208:13–19CrossRef Verma A, Goel TC, Mendiratta RG, Kishan P (2000) Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J Magn Magn Mater 208:13–19CrossRef
76.
go back to reference Maxwell JC (1973) A treatise on electricity and magnetism, 1st edn. Oxford University Press, New York Maxwell JC (1973) A treatise on electricity and magnetism, 1st edn. Oxford University Press, New York
77.
go back to reference Verwey EJW, Heilman EL (1947) Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J Chem Phys 15:174–180CrossRef Verwey EJW, Heilman EL (1947) Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J Chem Phys 15:174–180CrossRef
78.
go back to reference Abdeen AM (1999) Dielectric behaviour in Ni–Zn ferrites. J Magn Magn Mater 192:121–129CrossRef Abdeen AM (1999) Dielectric behaviour in Ni–Zn ferrites. J Magn Magn Mater 192:121–129CrossRef
79.
go back to reference Dolci S, Domenici V, Vidili G, Delogu LG (2016) Immune compatible cystine-functionalized superparamagnetic iron oxide nanoparticles as vascular contrast agents in ultrasonography. RSC Adv 6:2712–2723CrossRef Dolci S, Domenici V, Vidili G, Delogu LG (2016) Immune compatible cystine-functionalized superparamagnetic iron oxide nanoparticles as vascular contrast agents in ultrasonography. RSC Adv 6:2712–2723CrossRef
80.
go back to reference Melagiriyappa E, Jayanna HS, Chougule BK (2008) Dielectric behavior and ac electrical conductivity study of Sm3+substituted Mg–Zn ferrites. Mater Chem Phys 112:68–73CrossRef Melagiriyappa E, Jayanna HS, Chougule BK (2008) Dielectric behavior and ac electrical conductivity study of Sm3+substituted Mg–Zn ferrites. Mater Chem Phys 112:68–73CrossRef
81.
go back to reference Abo El Ata AM, El Nimr MK, Attia SM, El Kony D, Al-Hammadi AH (2006) Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J Magn Magn Mater 297:33–43CrossRef Abo El Ata AM, El Nimr MK, Attia SM, El Kony D, Al-Hammadi AH (2006) Studies of AC electrical conductivity and initial magnetic permeability of rare-earth-substituted Li–Co ferrites. J Magn Magn Mater 297:33–43CrossRef
82.
go back to reference Rabinkin L T, Novikova Z I (1960) Ferrites, vol. 12, Minsk: Acad. Nauk. USSR, p. 146 Rabinkin L T, Novikova Z I (1960) Ferrites, vol. 12, Minsk: Acad. Nauk. USSR, p. 146
83.
go back to reference Nasir S, Rehman MA, Malik MA (2011) Structural and dielectric properties of Cr-doped Ni–Zn nanoferrites. Phys Scr 83:025602–025606CrossRef Nasir S, Rehman MA, Malik MA (2011) Structural and dielectric properties of Cr-doped Ni–Zn nanoferrites. Phys Scr 83:025602–025606CrossRef
84.
go back to reference Sridhar ChSLN, Lakshmi ChS, Govindraj G, Bangarraju S, Satyanarayana L, Potukuchi DM (2016) Structural morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites. J Phys Chem Sol 92:72–84CrossRef Sridhar ChSLN, Lakshmi ChS, Govindraj G, Bangarraju S, Satyanarayana L, Potukuchi DM (2016) Structural morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites. J Phys Chem Sol 92:72–84CrossRef
Metadata
Title
Experimental characterization of nanocrystalline niobium-doped nickel–zinc ferrites: occurrence of superparamagnetism
Authors
Ch. S. Lakshmi
Ch. S. L. N. Sridhar
G. Govindraj
S. Bangarraju
D. M. Potukuchi
Publication date
10-06-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 18/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0088-0

Other articles of this Issue 18/2016

Journal of Materials Science 18/2016 Go to the issue

Premium Partners