Skip to main content
Top
Published in: The Review of Socionetwork Strategies 2/2019

16-04-2019 | Article

Experimental Evaluation of Approximation and Heuristic Algorithms for Maximum Distance-Bounded Subgraph Problems

Authors: Yuichi Asahiro, Tomohiro Kubo, Eiji Miyano

Published in: The Review of Socionetwork Strategies | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we consider two distance-based relaxed variants of the maximum clique problem (Max Clique), named Maxd-Clique and Maxd-Club for positive integers d. Max 1-Clique and Max 1-Club cannot be efficiently approximated within a factor of \(n^{1-\varepsilon }\) for any real \(\varepsilon > 0\) unless \({{{\mathcal {P}}}} = {{\mathcal {NP}}}\), since they are identical to Max Clique (Håstad in Acta Math 182(1):105–142, 1999; Zuckerman in Theory Comput 3:103–128, 2007). In addition, it is \({{\mathcal {NP}}}\)-hard to approximate Maxd-Clique and Maxd-Club to within a factor of \(n^{1/2 - \varepsilon }\) for any fixed integer \(d\ge 2\) and any real \(\varepsilon > 0\) (Asahiro et al. in Approximating maximum diameter-bounded subgraphs. In: Proc of LATIN 2010, Springer, pp 615–626, 2010; Asahiro et al. in Optimal approximation algorithms for maximum distance-bounded subgraph problems. In: Proc of COCOA, Springer, pp 586–600, 2015). As for approximability of Maxd-Clique and Maxd-Club, a polynomial-time algorithm, called ReFindStar\(_d\), that achieves an optimal approximation ratio of \(O(n^{1/2})\) for Maxd-Clique and Maxd-Club was designed for any integer \(d\ge 2\) in Asahiro et al. (2015, Algorithmica 80(6):1834–1856, 2018). Moreover, a simpler algorithm, called ByFindStar\(_d\), was proposed and it was shown in Asahiro et al. (2010, 2018) that although the approximation ratio of ByFindStar\(_d\) is much worse for any odd\(d\ge 3\), its time complexity is better than ReFindStar\(_d\). In this paper, we implement those approximation algorithms and evaluate their quality empirically for random graphs. The experimental results show that (1) ReFindStar\(_d\) can find larger d-clubs (d-cliques) than ByFindStar\(_d\) for odd d, (2) the size of d-clubs (d-cliques) output by ByFindStar\(_d\) is the same as ones by ReFindStar\(_d\) for even d, and (3) ByFindStar\(_d\) can find the same size of d-clubs (d-cliques) much faster than ReFindStar\(_d\). Furthermore, we propose and implement two new heuristics, Hclub\(_d\) for Maxd-Club and Hclique\(_d\) for Maxd-Clique. Then, we present the experimental evaluation of the solution size of ReFindStar\(_d\), Hclub\(_d\), Hclique\(_d\) and previously known heuristic algorithms for random graphs and Erdős collaboration graphs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abello, J., Resende, M.G., Sudarsky, S. (2002). Massive quasi-clique detection. In: Proc of LATIN 2002 (pp. 598–612). Springer. Abello, J., Resende, M.G., Sudarsky, S. (2002). Massive quasi-clique detection. In: Proc of LATIN 2002 (pp. 598–612). Springer.
2.
go back to reference Alba, R. D. (1973). A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology, 3(1), 113–126.CrossRef Alba, R. D. (1973). A graph-theoretic definition of a sociometric clique. Journal of Mathematical Sociology, 3(1), 113–126.CrossRef
3.
go back to reference Asahiro, Y., Doi, Y., Miyano, E., Shimizu, H. (2015). Optimal approximation algorithms for maximum distance-bounded subgraph problems. In: Proc of COCOA (pp. 586–600). Springer. Asahiro, Y., Doi, Y., Miyano, E., Shimizu, H. (2015). Optimal approximation algorithms for maximum distance-bounded subgraph problems. In: Proc of COCOA (pp. 586–600). Springer.
4.
go back to reference Asahiro, Y., Doi, Y., Miyano, E., & Shimizu, H. (2018). Optimal approximation algorithms for maximum distance-bounded subgraph problems. Algorithmica, 80(6), 1834–1856.CrossRef Asahiro, Y., Doi, Y., Miyano, E., & Shimizu, H. (2018). Optimal approximation algorithms for maximum distance-bounded subgraph problems. Algorithmica, 80(6), 1834–1856.CrossRef
5.
go back to reference Asahiro, Y., Kubo, T., Miyano, E. (2016). Experimental evaluation of approximation algorithms for maximum distance-bounded subgraph problems. In: Proc of SCIS & ISIS (pp. 892–897). Asahiro, Y., Kubo, T., Miyano, E. (2016). Experimental evaluation of approximation algorithms for maximum distance-bounded subgraph problems. In: Proc of SCIS & ISIS (pp. 892–897).
6.
go back to reference Asahiro, Y., Miyano, E., Samizo, K. (2010). Approximating maximum diameter-bounded subgraphs. In: Proc of LATIN 2010 (pp. 615–626). Springer. Asahiro, Y., Miyano, E., Samizo, K. (2010). Approximating maximum diameter-bounded subgraphs. In: Proc of LATIN 2010 (pp. 615–626). Springer.
8.
go back to reference Bollobás, B. (2001). Random graphs. Cambridge: Cambridge University Press.CrossRef Bollobás, B. (2001). Random graphs. Cambridge: Cambridge University Press.CrossRef
10.
go back to reference Bourjolly, J. M., Laporte, G., & Pesant, G. (2000). Heuristics for finding \(k\)-clubs in an undirected graph. Computers & Operations Research, 27, 559–569.CrossRef Bourjolly, J. M., Laporte, G., & Pesant, G. (2000). Heuristics for finding \(k\)-clubs in an undirected graph. Computers & Operations Research, 27, 559–569.CrossRef
11.
go back to reference Carraghan, R., & Pardalos, P. (1990). An exact algorithm for the maximum clique problem. Operations Research Letters, 9(6), 375–382.CrossRef Carraghan, R., & Pardalos, P. (1990). An exact algorithm for the maximum clique problem. Operations Research Letters, 9(6), 375–382.CrossRef
12.
go back to reference Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae, 6, 290–297. Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae, 6, 290–297.
13.
go back to reference Galil, Z., & Margalit, O. (1977). All pairs shortest distances for graphs with small integer length edges. Information & Computation, 134, 103–139.CrossRef Galil, Z., & Margalit, O. (1977). All pairs shortest distances for graphs with small integer length edges. Information & Computation, 134, 103–139.CrossRef
14.
go back to reference Galil, Z., & Margalit, O. (1977). All pairs shortest paths for graphs with small integer length edges. Journal of Computer and System Sciences, 54, 243–254.CrossRef Galil, Z., & Margalit, O. (1977). All pairs shortest paths for graphs with small integer length edges. Journal of Computer and System Sciences, 54, 243–254.CrossRef
16.
go back to reference Grosso, A., Locatelli, M., & Croce, F. (2004). Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. Journal of Heuristics, 10(2), 135–152.CrossRef Grosso, A., Locatelli, M., & Croce, F. (2004). Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. Journal of Heuristics, 10(2), 135–152.CrossRef
17.
go back to reference Håstad, J. (1999). Clique is hard to approximate within \(n^{1-\varepsilon }\). Acta Mathematics, 182(1), 105–142.CrossRef Håstad, J. (1999). Clique is hard to approximate within \(n^{1-\varepsilon }\). Acta Mathematics, 182(1), 105–142.CrossRef
18.
go back to reference Karp, R. (1972). Reducibility among combinatorial problems. Complexity of computer computations (pp. 85–103). Boston: Springer.CrossRef Karp, R. (1972). Reducibility among combinatorial problems. Complexity of computer computations (pp. 85–103). Boston: Springer.CrossRef
19.
go back to reference Katayama, K., Hamamoto, A., & Narihisa, H. (2005). An effective local search for the maximum clique problem. Information Processing Letters, 95(5), 503–511.CrossRef Katayama, K., Hamamoto, A., & Narihisa, H. (2005). An effective local search for the maximum clique problem. Information Processing Letters, 95(5), 503–511.CrossRef
20.
go back to reference Le Gall, F. (2014) Powers of tensors and fast matrix multiplication. In: Proc of ISAAC, pp. 296–303. Le Gall, F. (2014) Powers of tensors and fast matrix multiplication. In: Proc of ISAAC, pp. 296–303.
21.
go back to reference Luce, R., & Perry, A. (1949). A method of matrix analysis of group structure. Psychometrika, 14, 95–116.CrossRef Luce, R., & Perry, A. (1949). A method of matrix analysis of group structure. Psychometrika, 14, 95–116.CrossRef
22.
go back to reference Luce, R. D. (1950). Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2), 169–190.CrossRef Luce, R. D. (1950). Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2), 169–190.CrossRef
23.
go back to reference Marinček, J., & Mohar, B. (2002). On approximating the maximum diameter ratio of graphs. Discrete Mathematics, 244, 323–330.CrossRef Marinček, J., & Mohar, B. (2002). On approximating the maximum diameter ratio of graphs. Discrete Mathematics, 244, 323–330.CrossRef
24.
go back to reference Maslov, E., Batsyn, M., & Pardalos, P. (2014). Speeding up branch and bound algorithms for solving the maximum clique problem. Journal of Global Optimization, 59(1), 1–21.CrossRef Maslov, E., Batsyn, M., & Pardalos, P. (2014). Speeding up branch and bound algorithms for solving the maximum clique problem. Journal of Global Optimization, 59(1), 1–21.CrossRef
25.
go back to reference Mokken, R. J. (1979). Cliques, clubs and clans. Quality and Quantity, 13, 161–173.CrossRef Mokken, R. J. (1979). Cliques, clubs and clans. Quality and Quantity, 13, 161–173.CrossRef
26.
go back to reference Moore, C., & Mertens, S. (2011). The nature of computation. Oxford: Oxford University Press.CrossRef Moore, C., & Mertens, S. (2011). The nature of computation. Oxford: Oxford University Press.CrossRef
27.
go back to reference Östergȧrd, P. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120(1), 197–207.CrossRef Östergȧrd, P. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120(1), 197–207.CrossRef
28.
go back to reference Pajouh, F. M., & Balasundaram, B. (2012). On inclusionwise maximal and maximum cardinality \(k\)-clubs in graphs. Descrete Optimization, 9, 84–97.CrossRef Pajouh, F. M., & Balasundaram, B. (2012). On inclusionwise maximal and maximum cardinality \(k\)-clubs in graphs. Descrete Optimization, 9, 84–97.CrossRef
29.
go back to reference Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H., Liao, Wk, & Choudhary, A. (2015). Fast algorithms for the maximum clique problem on massive graphs with applications to overlapping community detection. Internet Mathematics, 11(4–5), 421–448.CrossRef Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H., Liao, Wk, & Choudhary, A. (2015). Fast algorithms for the maximum clique problem on massive graphs with applications to overlapping community detection. Internet Mathematics, 11(4–5), 421–448.CrossRef
30.
go back to reference Seidel, R. (1995). On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences, 51, 400–403.CrossRef Seidel, R. (1995). On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of Computer and System Sciences, 51, 400–403.CrossRef
31.
go back to reference Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.CrossRef Seidman, S. B. (1983). Network structure and minimum degree. Social Networks, 5(3), 269–287.CrossRef
32.
go back to reference Seidman, S. B., & Foster, B. L. (1978). A graph-theoretic generalization of the clique concept. Journal of Mathematical Sociology, 6(1), 139–154.CrossRef Seidman, S. B., & Foster, B. L. (1978). A graph-theoretic generalization of the clique concept. Journal of Mathematical Sociology, 6(1), 139–154.CrossRef
33.
go back to reference Shahinpour, S., & Butenko, S. (2013). Algorithms for the maximum \(k\)-club problem in graphs. Journal of Combinatorial Optimization, 26, 520–554.CrossRef Shahinpour, S., & Butenko, S. (2013). Algorithms for the maximum \(k\)-club problem in graphs. Journal of Combinatorial Optimization, 26, 520–554.CrossRef
34.
go back to reference Tomita, E., Seki, T. (2003). An efficient branch-and-bound algorithm for finding a maximum clique. In: Proc of DMTCS (pp. 278–289).CrossRef Tomita, E., Seki, T. (2003). An efficient branch-and-bound algorithm for finding a maximum clique. In: Proc of DMTCS (pp. 278–289).CrossRef
35.
go back to reference Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M. (2010) A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Proc of WALCOM (pp. 191–203).CrossRef Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M. (2010) A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Proc of WALCOM (pp. 191–203).CrossRef
36.
go back to reference Zuckerman, D. (2007). Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing, 3, 103–128.CrossRef Zuckerman, D. (2007). Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing, 3, 103–128.CrossRef
Metadata
Title
Experimental Evaluation of Approximation and Heuristic Algorithms for Maximum Distance-Bounded Subgraph Problems
Authors
Yuichi Asahiro
Tomohiro Kubo
Eiji Miyano
Publication date
16-04-2019
Publisher
Springer Japan
Published in
The Review of Socionetwork Strategies / Issue 2/2019
Print ISSN: 2523-3173
Electronic ISSN: 1867-3236
DOI
https://doi.org/10.1007/s12626-019-00036-2

Other articles of this Issue 2/2019

The Review of Socionetwork Strategies 2/2019 Go to the issue

Newsletter

Newsletter

Premium Partner