Skip to main content
Top
Published in: International Journal of Steel Structures 4/2023

04-07-2023

Experimental Performance Evaluation of Concrete-Filled Steel Tube Columns Confined by High-Strength Steel Bolts

Authors: Salih K. Alrebeh, Ahmed D. Ahmed, Ali K. Al-Asad, Talha Ekmekyapar

Published in: International Journal of Steel Structures | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Concrete-steel composite columns have been utilized prevalently as load-bearing members in structures. The present study investigates the uniaxial behavior of concrete-filled steel tube (CFST) columns, which were proposed to provide high-strength steel bolts as external confinement to enhance the structural behavior of CFST columns. A total of 18 CFST columns were designed, out of which 12 columns were confined with steel bolts and 6 columns were unconfined; all columns were tested under axial compression. A mixture of self-compacting concrete (SCC) was utilized to fill all the test specimens. This study proposed an innovative approach to increase the restriction on lateral expansion of steel wall during elastic loading stage, which is expected to enhance structural behavior of CFST column. Test parameters included the effect of steel bolt spacing, three different (L/D) ratios, and two diffrent (D/t) ratios. The test findings demonstrated that the compression strength, axial stiffness, toughness, and ductility behavior of CFST columns increase as the spacing of steel bolts decreases and the improvement becomes more pronounced as the (L/D) and (D/t) ratios decrease. In addition, the compression capacity of the improved CFT short, medium, and long columns were enhanced by 25.3, 9, and 3.5%, respectively. A design model was developed to estimate the ultimate compression behavior of the improved CFST columns using steel bolts, and a close correlation was obtained between experimental findings and the proposed model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abedi, K., Ferdousi, A., & Afshin, H. (2008). A novel steel section for concrete-filled tubular columns. Thin-Walled Structures, 46(3), 310–319.CrossRef Abedi, K., Ferdousi, A., & Afshin, H. (2008). A novel steel section for concrete-filled tubular columns. Thin-Walled Structures, 46(3), 310–319.CrossRef
go back to reference Ahmed, A. D., & Güneyisi, E. M. (2019). Structural performance of frames with concrete-filled steel tubular columns and steel beams: Finite element approach. Advanced Composites Letters, 28, 2633366X19894593.CrossRef Ahmed, A. D., & Güneyisi, E. M. (2019). Structural performance of frames with concrete-filled steel tubular columns and steel beams: Finite element approach. Advanced Composites Letters, 28, 2633366X19894593.CrossRef
go back to reference Al-Eliwi, B. J., Ekmekyapar, T., Faraj, R. H., Gogus, M. T., & Al-Shaar, A. A. (2017). Performance of lightweight aggregate and self-compacted concrete-filled steel tube columns. Steel and Composite Structures, 25(3), 299–314. Al-Eliwi, B. J., Ekmekyapar, T., Faraj, R. H., Gogus, M. T., & Al-Shaar, A. A. (2017). Performance of lightweight aggregate and self-compacted concrete-filled steel tube columns. Steel and Composite Structures, 25(3), 299–314.
go back to reference Alhatmey, I. A., Ekmekyapar, T., & Alrebeh, S. K. (2018). Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns. Advances in Concrete Construction, 6(5), 485–507. Alhatmey, I. A., Ekmekyapar, T., & Alrebeh, S. K. (2018). Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns. Advances in Concrete Construction, 6(5), 485–507.
go back to reference Alrebeh, S. K., & Ekmekyapar, T. (2019a). Structural performance of short concrete-filled steel tube columns with external and internal stiffening under axial compression. Structures, 20, 702–716.CrossRef Alrebeh, S. K., & Ekmekyapar, T. (2019a). Structural performance of short concrete-filled steel tube columns with external and internal stiffening under axial compression. Structures, 20, 702–716.CrossRef
go back to reference Alrebeh, S. K., & Ekmekyapar, T. (2019b). Structural behavior of concrete-filled steel tube short columns stiffened by external and internal continuous spirals. Structures, 22, 98–108.CrossRef Alrebeh, S. K., & Ekmekyapar, T. (2019b). Structural behavior of concrete-filled steel tube short columns stiffened by external and internal continuous spirals. Structures, 22, 98–108.CrossRef
go back to reference ASTM C39/C39-M-14a. (2014). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International. ASTM C39/C39-M-14a. (2014). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International.
go back to reference ASTM E8/E8M-16. (2016). Standard test methods for tension testing of metallic material. ASTM International. ASTM E8/E8M-16. (2016). Standard test methods for tension testing of metallic material. ASTM International.
go back to reference Bridge, R. Q., & O’Shea, M. D. (1998). Behaviour of thin-walled steel box sections with or without internal restraint. Journal of Constructional Steel Research, 47, 73–91.CrossRef Bridge, R. Q., & O’Shea, M. D. (1998). Behaviour of thin-walled steel box sections with or without internal restraint. Journal of Constructional Steel Research, 47, 73–91.CrossRef
go back to reference Cai, S. H., & Jiao, Z. S. (1984). Behavior and ultimate strength of short concrete-filled steel tubular columns. Journal of Building Structures, 6, 13–28. Cai, S. H., & Jiao, Z. S. (1984). Behavior and ultimate strength of short concrete-filled steel tubular columns. Journal of Building Structures, 6, 13–28.
go back to reference Cai, J., Pan, J., & Wu, Y. (2015). Mechanical behavior of steel-reinforced concrete-filled steel tubular (SRCFST) columns under uniaxial compressive loading. Thin-Walled Structures, 97, 1–10.CrossRef Cai, J., Pan, J., & Wu, Y. (2015). Mechanical behavior of steel-reinforced concrete-filled steel tubular (SRCFST) columns under uniaxial compressive loading. Thin-Walled Structures, 97, 1–10.CrossRef
go back to reference Chao, S. H., Karki, N. B., Cho, J. S., & Waweru, R. N. (2012). Use of double punch test to evaluate the mechanical performance of fiber reinforced concrete. High performance fiber reinforced cement composites (pp. 27–34). Springer.CrossRef Chao, S. H., Karki, N. B., Cho, J. S., & Waweru, R. N. (2012). Use of double punch test to evaluate the mechanical performance of fiber reinforced concrete. High performance fiber reinforced cement composites (pp. 27–34). Springer.CrossRef
go back to reference Dabaon, M., El-Khoriby, S., El-Boghdadi, M., & Hassanein, M. F. (2009). Confinement effect of stiffened and unstiffened concrete-filled stainless-steel tubular stub columns. Journal of Constructional Steel Research, 65, 1846–1854.CrossRef Dabaon, M., El-Khoriby, S., El-Boghdadi, M., & Hassanein, M. F. (2009). Confinement effect of stiffened and unstiffened concrete-filled stainless-steel tubular stub columns. Journal of Constructional Steel Research, 65, 1846–1854.CrossRef
go back to reference de Oliveira, W. L. A., De Nardin, S., de Cresce El, A. L. H., & El Debs, M. K. (2009). Influence of concrete strength and length/diameter on the axial capacity of CFT columns. Journal of Constructional Steel Research, 65(12), 2103–2110.CrossRef de Oliveira, W. L. A., De Nardin, S., de Cresce El, A. L. H., & El Debs, M. K. (2009). Influence of concrete strength and length/diameter on the axial capacity of CFT columns. Journal of Constructional Steel Research, 65(12), 2103–2110.CrossRef
go back to reference Dundu, M. (2012). Compressive strength of circular concrete filled steel tube columns. Thin-Walled Structures, 56, 62–70.CrossRef Dundu, M. (2012). Compressive strength of circular concrete filled steel tube columns. Thin-Walled Structures, 56, 62–70.CrossRef
go back to reference Ekmekyapar, T., Alwan, O. H., Hasan, H. G., Shehab, B. A., & Al-Eliwi, B. J. (2019). Comparison of classical, double skin and double section CFST stub columns: Experiments and design formulations. Journal of Constructional Steel Research, 155, 192–204.CrossRef Ekmekyapar, T., Alwan, O. H., Hasan, H. G., Shehab, B. A., & Al-Eliwi, B. J. (2019). Comparison of classical, double skin and double section CFST stub columns: Experiments and design formulations. Journal of Constructional Steel Research, 155, 192–204.CrossRef
go back to reference Ellobody, E., Youngb, B., & Lamc, D. (2006). Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62, 706–715.CrossRef Ellobody, E., Youngb, B., & Lamc, D. (2006). Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. Journal of Constructional Steel Research, 62, 706–715.CrossRef
go back to reference Ezeldin, A. S., & Balaguru, P. N. (1992). Normal-and high-strength fiber-reinforced concrete under compression. Journal of Materials in Civil Engineering, 4(4), 415–429.CrossRef Ezeldin, A. S., & Balaguru, P. N. (1992). Normal-and high-strength fiber-reinforced concrete under compression. Journal of Materials in Civil Engineering, 4(4), 415–429.CrossRef
go back to reference Ge, H., & Usami, T. (1992). Strength of concrete-filled thin-walled steel box columns. Journal of Structural Engineering, 118(11), 3036–3054.CrossRef Ge, H., & Usami, T. (1992). Strength of concrete-filled thin-walled steel box columns. Journal of Structural Engineering, 118(11), 3036–3054.CrossRef
go back to reference Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60, 1049–1068.CrossRef Giakoumelis, G., & Lam, D. (2004). Axial capacity of circular concrete-filled tube columns. Journal of Constructional Steel Research, 60, 1049–1068.CrossRef
go back to reference Han, L. H. (2002). Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 58, 353–372.CrossRef Han, L. H. (2002). Tests on stub columns of concrete-filled RHS sections. Journal of Constructional Steel Research, 58, 353–372.CrossRef
go back to reference Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures members. Journal of Constructional Steel Research, 100(5), 211–228.CrossRef Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures members. Journal of Constructional Steel Research, 100(5), 211–228.CrossRef
go back to reference Han, L. H., Yao, G. H., & Zhao, X. L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61, 1241–1269.CrossRef Han, L. H., Yao, G. H., & Zhao, X. L. (2005). Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). Journal of Constructional Steel Research, 61, 1241–1269.CrossRef
go back to reference Hasan, H. G., Ekmekyapar, T., & Shehab, B. A. (2019). Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression. Marine Structures, 65, 417–432.CrossRef Hasan, H. G., Ekmekyapar, T., & Shehab, B. A. (2019). Mechanical performances of stiffened and reinforced concrete-filled steel tubes under axial compression. Marine Structures, 65, 417–432.CrossRef
go back to reference Hassanein, M. F., Patel, V. I., El Hadidy, A. M., Al Abadi, H., & Elchalakani, M. (2018). Structural behaviour and design of elliptical high-strength concrete-filled steel tubular short compression members. Engineering Structures, 173, 495–511.CrossRef Hassanein, M. F., Patel, V. I., El Hadidy, A. M., Al Abadi, H., & Elchalakani, M. (2018). Structural behaviour and design of elliptical high-strength concrete-filled steel tubular short compression members. Engineering Structures, 173, 495–511.CrossRef
go back to reference Ho, J. C. M., & Lai, M. H. (2013). Behaviour of uni-axially loaded CFST columns confined by tie bars. Journal of Constructional Steel Research, 83, 37–50.CrossRef Ho, J. C. M., & Lai, M. H. (2013). Behaviour of uni-axially loaded CFST columns confined by tie bars. Journal of Constructional Steel Research, 83, 37–50.CrossRef
go back to reference Ho, J. C. M., Lai, M. H., & Luo, L. (2014). Uniaxial behaviour of confined high-strength concrete-filled-steel-tube columns. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 167(9), 520–533. Ho, J. C. M., Lai, M. H., & Luo, L. (2014). Uniaxial behaviour of confined high-strength concrete-filled-steel-tube columns. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 167(9), 520–533.
go back to reference Hu, Y. M., Yu, T., & Teng, J. G. (2011). FRP-confined circular concrete-filled thin steel tubes under axil compression. Journal of Composites for Construction, 15(5), 850–860.CrossRef Hu, Y. M., Yu, T., & Teng, J. G. (2011). FRP-confined circular concrete-filled thin steel tubes under axil compression. Journal of Composites for Construction, 15(5), 850–860.CrossRef
go back to reference Huang, C. S., Yeh, Y. K., Liu, G. Y., Hu, H. T., Tsai, K. C., Weng, Y. T., Wang, S. H., & Wu, M. H. (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, 128(9), 1222–1230.CrossRef Huang, C. S., Yeh, Y. K., Liu, G. Y., Hu, H. T., Tsai, K. C., Weng, Y. T., Wang, S. H., & Wu, M. H. (2002). Axial load behavior of stiffened concrete-filled steel columns. Journal of Structural Engineering, 128(9), 1222–1230.CrossRef
go back to reference Johansson, M. (2002). The efficiency of passive confinement in CFT columns. Steel and Composite Structures, an International Journal, 2(5), 379–396.CrossRef Johansson, M. (2002). The efficiency of passive confinement in CFT columns. Steel and Composite Structures, an International Journal, 2(5), 379–396.CrossRef
go back to reference Kitada, T. (1998). Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan. Engineering Structures, 20(4–6), 347–354.CrossRef Kitada, T. (1998). Ultimate strength and ductility of state-of-the-art concrete-filled steel bridge piers in Japan. Engineering Structures, 20(4–6), 347–354.CrossRef
go back to reference Kuranovas, A., & Kvedaras, A. K. (2007). Behaviour of hollow concrete-filled steel tubular composite elements. Journal of Civil Engineering and Management, 13(2), 131–141.CrossRef Kuranovas, A., & Kvedaras, A. K. (2007). Behaviour of hollow concrete-filled steel tubular composite elements. Journal of Civil Engineering and Management, 13(2), 131–141.CrossRef
go back to reference Kwon, Y. B., Seo, S. J., & Kang, D. W. (2011). Prediction of the squash loads of concrete-filled tubular section columns with local buckling. Thin-Walled Structures, 49, 85–93.CrossRef Kwon, Y. B., Seo, S. J., & Kang, D. W. (2011). Prediction of the squash loads of concrete-filled tubular section columns with local buckling. Thin-Walled Structures, 49, 85–93.CrossRef
go back to reference Lai, M. H., & Ho, J. C. M. (2014a). Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Engineering Structures, 67, 123–141.CrossRef Lai, M. H., & Ho, J. C. M. (2014a). Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Engineering Structures, 67, 123–141.CrossRef
go back to reference Lai, M. H., & Ho, J. C. M. (2014b). Behaviour of uni-axially loaded concrete-filled-steel-tube columns confined by external rings. The Structural Design of Tall and Special Buildings, 23(6), 403–426.CrossRef Lai, M. H., & Ho, J. C. M. (2014b). Behaviour of uni-axially loaded concrete-filled-steel-tube columns confined by external rings. The Structural Design of Tall and Special Buildings, 23(6), 403–426.CrossRef
go back to reference Lai, M. H., & Ho, J. C. M. (2015). Effect of continuous spirals on uni-axial strength and ductility of CFST columns. Journal of Constructional Steel Research, 104, 235–249.CrossRef Lai, M. H., & Ho, J. C. M. (2015). Effect of continuous spirals on uni-axial strength and ductility of CFST columns. Journal of Constructional Steel Research, 104, 235–249.CrossRef
go back to reference Le Hoang, A., & Fehling, E. (2017). Numerical study of circular steel tube confined concrete (STCC) stub columns. Journal of Constructional Steel Research, 136, 238–255.CrossRef Le Hoang, A., & Fehling, E. (2017). Numerical study of circular steel tube confined concrete (STCC) stub columns. Journal of Constructional Steel Research, 136, 238–255.CrossRef
go back to reference Li, S., Liu, Z., Lu, Y., & Zhu, T. (2017). Shear performance of steel fibers reinforced self-confinement and self-compacting concrete-filled steel tube stub columns. Construction and Building Materials, 147, 758–775.CrossRef Li, S., Liu, Z., Lu, Y., & Zhu, T. (2017). Shear performance of steel fibers reinforced self-confinement and self-compacting concrete-filled steel tube stub columns. Construction and Building Materials, 147, 758–775.CrossRef
go back to reference Liang, W., Dong, J., & Wang, Q. (2018). Axial compressive behavior of concrete-filled steel tube columns with stiffeners. Steel and Composite Structures, 29(2), 151–159. Liang, W., Dong, J., & Wang, Q. (2018). Axial compressive behavior of concrete-filled steel tube columns with stiffeners. Steel and Composite Structures, 29(2), 151–159.
go back to reference Montuori, R., & Piluso, V. (2015). Analysis and modelling of CFT members: Moment curvature analysis. Thin-Walled Structures, 86, 157–166.CrossRef Montuori, R., & Piluso, V. (2015). Analysis and modelling of CFT members: Moment curvature analysis. Thin-Walled Structures, 86, 157–166.CrossRef
go back to reference Moon, J., Roeder, C. W., Lehman, D. E., & Lee, H. E. (2012). Analytical modeling of bending of circular concrete-filled steel tubes. Engineering Structures, 42, 349–361.CrossRef Moon, J., Roeder, C. W., Lehman, D. E., & Lee, H. E. (2012). Analytical modeling of bending of circular concrete-filled steel tubes. Engineering Structures, 42, 349–361.CrossRef
go back to reference Oehlers, D. J., & Bradford, M. A. (2013). Composite steel and concrete structures: Fundamental behaviour. Elsevier. Oehlers, D. J., & Bradford, M. A. (2013). Composite steel and concrete structures: Fundamental behaviour. Elsevier.
go back to reference Park, J. W., & Choi, S. M. (2013). Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads. Steel and Composite Structures, 14(5), 453–472.CrossRef Park, J. W., & Choi, S. M. (2013). Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads. Steel and Composite Structures, 14(5), 453–472.CrossRef
go back to reference Petrus, C., Hamid, H. A., Ibrahim, A., & Parke, G. (2010). Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners. Journal of Constructional Steel Research, 66(7), 915–922.CrossRef Petrus, C., Hamid, H. A., Ibrahim, A., & Parke, G. (2010). Experimental behaviour of concrete filled thin walled steel tubes with tab stiffeners. Journal of Constructional Steel Research, 66(7), 915–922.CrossRef
go back to reference Prabhu, G. G., & Sundarraja, M. C. (2013). Behaviour of concrete filled steel tubular (CFST) short columns externally reinforced using CFRP strips composite. Construction and Building Materials, 47, 1362–1371.CrossRef Prabhu, G. G., & Sundarraja, M. C. (2013). Behaviour of concrete filled steel tubular (CFST) short columns externally reinforced using CFRP strips composite. Construction and Building Materials, 47, 1362–1371.CrossRef
go back to reference Schneider, S. P. (1998). Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, 124, 1125–1138.CrossRef Schneider, S. P. (1998). Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, 124, 1125–1138.CrossRef
go back to reference Shanmugam, N. E., & Lakshmi, B. (2001). State of the art report on steel–concrete composite columns. Journal of Constructional Steel Research, 57(10), 1041–1080.CrossRef Shanmugam, N. E., & Lakshmi, B. (2001). State of the art report on steel–concrete composite columns. Journal of Constructional Steel Research, 57(10), 1041–1080.CrossRef
go back to reference Tao, Z., Han, L. H., & Wang, Z. B. (2005). Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research, 61(7), 962–983.CrossRef Tao, Z., Han, L. H., & Wang, Z. B. (2005). Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. Journal of Constructional Steel Research, 61(7), 962–983.CrossRef
go back to reference Tao, Z., Han, L. H., & Wang, D. Y. (2007). Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Structures, 45(5), 517–527.CrossRef Tao, Z., Han, L. H., & Wang, D. Y. (2007). Experimental behaviour of concrete-filled stiffened thin-walled steel tubular columns. Thin-Walled Structures, 45(5), 517–527.CrossRef
go back to reference Tao, Z., Han, L. H., & Wang, D. Y. (2008). Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Structures, 46(10), 1113–1128.CrossRef Tao, Z., Han, L. H., & Wang, D. Y. (2008). Strength and ductility of stiffened thin-walled hollow steel structural stub columns filled with concrete. Thin-Walled Structures, 46(10), 1113–1128.CrossRef
go back to reference Tao, Z., Uy, B., Han, L. H., & Wang, Z. B. (2009). Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression. Thin-Walled Structures, 47(12), 1544–1556.CrossRef Tao, Z., Uy, B., Han, L. H., & Wang, Z. B. (2009). Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression. Thin-Walled Structures, 47(12), 1544–1556.CrossRef
go back to reference Uy, B. (2001). Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research, 57, 113–134.CrossRef Uy, B. (2001). Strength of short concrete filled high strength steel box columns. Journal of Constructional Steel Research, 57, 113–134.CrossRef
go back to reference Uy, B., Tao, Z., & Han, L. H. (2011). Behaviour of short and slender concrete-filled stainless-steel tubular columns. Journal of Constructional Steel Research, 67, 360–378.CrossRef Uy, B., Tao, Z., & Han, L. H. (2011). Behaviour of short and slender concrete-filled stainless-steel tubular columns. Journal of Constructional Steel Research, 67, 360–378.CrossRef
go back to reference Wang, Q., Zhao, D., & Guan, P. (2004). Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete. Engineering Structures, 26(7), 907–915.CrossRef Wang, Q., Zhao, D., & Guan, P. (2004). Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete. Engineering Structures, 26(7), 907–915.CrossRef
go back to reference Xiao, Y., He, W. H., & Choi, K. K. (2005). Confined concrete-filled tubular columns. Journal of Structural Engineering, 131(3), 488–497.CrossRef Xiao, Y., He, W. H., & Choi, K. K. (2005). Confined concrete-filled tubular columns. Journal of Structural Engineering, 131(3), 488–497.CrossRef
go back to reference Zeghichea, J., & Chaouib, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61, 53–66.CrossRef Zeghichea, J., & Chaouib, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61, 53–66.CrossRef
go back to reference Zhao, X. L., & Packer, J. A. (2009). Tests and design of concrete-filled elliptical hollow section stub columns. Thin-Walled Structures, 47, 617–628.CrossRef Zhao, X. L., & Packer, J. A. (2009). Tests and design of concrete-filled elliptical hollow section stub columns. Thin-Walled Structures, 47, 617–628.CrossRef
go back to reference Zhong, S. T. (2006). Unified theory of CFST: Research and application. Tsinghua University Press. Zhong, S. T. (2006). Unified theory of CFST: Research and application. Tsinghua University Press.
go back to reference Ziemian, R. D. (2010). Guide to stability design criteria for metal structures. Wiley.CrossRef Ziemian, R. D. (2010). Guide to stability design criteria for metal structures. Wiley.CrossRef
Metadata
Title
Experimental Performance Evaluation of Concrete-Filled Steel Tube Columns Confined by High-Strength Steel Bolts
Authors
Salih K. Alrebeh
Ahmed D. Ahmed
Ali K. Al-Asad
Talha Ekmekyapar
Publication date
04-07-2023
Publisher
Korean Society of Steel Construction
Published in
International Journal of Steel Structures / Issue 4/2023
Print ISSN: 1598-2351
Electronic ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-023-00755-x

Other articles of this Issue 4/2023

International Journal of Steel Structures 4/2023 Go to the issue

Premium Partners