Skip to main content
Top
Published in: International Journal of Material Forming 4/2017

21-07-2016 | Original Research

Experimental prediction of sheet metal formability of AW-5754 for non-linear strain paths by using a cruciform specimen and a blank holder with adjustable draw beads on a sheet metal testing machine

Authors: David Jocham, Christian Gaber, Ole Böttcher, Patrik Wiedemann, Wolfram Volk

Published in: International Journal of Material Forming | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The main objective to guarantee a high efficiency in the press shop is to produce sheet metal parts without failure. The feasibility of sheet metal parts is nowadays ensured during the development process by a comparison of the occurring strains in the simulation with the Forming Limit Diagram (FLD). The principle of the experimental procedure to determine the FLD is standardized in ISO 12004–2 [1]. This procedure is only valid with high accuracy for proportional unbroken strain paths. However, in most industrial forming operations non-linear strain paths occur. To resolve this problem, a phenomenological approach was introduced by Volk [2], the so-called Generalized Forming Limit Concept (GFLC). Localized necking and the remaining formability for any arbitrary non-linear strain path can be predicted with the GFLC. Furthermore, experimental investigation of multi-linear strain paths appears highly complex in practice and involves a range of testing equipment, e.g. different specimens, testing machines and tools. In this paper an alternative method is introduced by using a cruciform specimen and a draw bead tool on a sheet metal testing machine. The different draw bead heights allow the creation of arbitrary strain states, which can be changed at different height of the punch. Conventionally cruciform specimens are used to determine the yield loci in the first quadrant of the stress space at low strain values. To enable a cruciform specimen for the evaluation of strain limits comparable to the conventional Nakajima test, an optimization of the geometry regarding the maximum achievable strains in the specimen center takes place. The developed specimen and tool allow testing of materials under multi-axial strain states with a reduced testing effort.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference ISO copyright office (2006) Metallic materials-sheet and strip-determination of forming limit curves-part 2: determination of forming limit curves in laboratory. ISO/DIS 12004-2:2006 ISO copyright office (2006) Metallic materials-sheet and strip-determination of forming limit curves-part 2: determination of forming limit curves in laboratory. ISO/DIS 12004-2:2006
2.
go back to reference Volk W, Suh J (2013) Prediction of formability for non-linear deformation history using generalized forming limit concept (GFLC). AIP Conf Proc 1567:556–561CrossRef Volk W, Suh J (2013) Prediction of formability for non-linear deformation history using generalized forming limit concept (GFLC). AIP Conf Proc 1567:556–561CrossRef
3.
go back to reference Nakajima K, Kikuma T, Asaku K (1968) Study on the formability of steel sheet. Yawata Technical Report 264 Nakajima K, Kikuma T, Asaku K (1968) Study on the formability of steel sheet. Yawata Technical Report 264
5.
go back to reference Müschenborn W, Sonne HM (1975) Effects of the strain path on the limits of deformation of sheet metal (in german). Archiv Eisenhüttenwesen 46(9):597–602CrossRef Müschenborn W, Sonne HM (1975) Effects of the strain path on the limits of deformation of sheet metal (in german). Archiv Eisenhüttenwesen 46(9):597–602CrossRef
6.
go back to reference Kleemola HJ, Pelkkikangas MT (1977) Effect of predeformation and strain path on the forming limits of steel, copper and brass. Sheet Metal Ind 63:591–599 Kleemola HJ, Pelkkikangas MT (1977) Effect of predeformation and strain path on the forming limits of steel, copper and brass. Sheet Metal Ind 63:591–599
7.
go back to reference Graf A, Hosford WF (1993) Calculations of forming limit diagrams for changing strain paths. Metall Trans A 24(11):2497–2501CrossRef Graf A, Hosford WF (1993) Calculations of forming limit diagrams for changing strain paths. Metall Trans A 24(11):2497–2501CrossRef
8.
go back to reference Arrieux R (1981) Contribution to the determination of forming limit curves of titanium and aluminium. Proposal of an intrinsic criterion. PhD Thesis, INSA Arrieux R (1981) Contribution to the determination of forming limit curves of titanium and aluminium. Proposal of an intrinsic criterion. PhD Thesis, INSA
10.
go back to reference Stoughton TB, Yoon JW (2012) Path independent forming limits in strain and stress spaces. Int. J. Solids Structure 49:3616–3625CrossRef Stoughton TB, Yoon JW (2012) Path independent forming limits in strain and stress spaces. Int. J. Solids Structure 49:3616–3625CrossRef
11.
go back to reference Carr AR, Walker A, Combaz E (2015) Derivation of a forming limit stress diagram from an experimental FLC, and comparison of the two criteria when applied to FE simulation of a pressing using different yield functions. Int. J. Mater Form 8:45–57. doi:10.1007/s12289-013-1146-7 CrossRef Carr AR, Walker A, Combaz E (2015) Derivation of a forming limit stress diagram from an experimental FLC, and comparison of the two criteria when applied to FE simulation of a pressing using different yield functions. Int. J. Mater Form 8:45–57. doi:10.​1007/​s12289-013-1146-7 CrossRef
13.
go back to reference Werber A., Liewald M, Nester W, Grünbaum M, Wiegand K, Simon J, Timm J, Hotz W (2013) Assessment of forming limit stress curves as failure criterion for non-proportional forming processes. Prod Eng 7(2–3):213–221. doi:10.1007/s11740-013-0446-6 Werber A., Liewald M, Nester W, Grünbaum M, Wiegand K, Simon J, Timm J, Hotz W (2013) Assessment of forming limit stress curves as failure criterion for non-proportional forming processes. Prod Eng 7(2–3):213–221. doi:10.​1007/​s11740-013-0446-6
14.
go back to reference Hora P, Tong L (1994) Prediction methods for ductile sheet metal failure using FE simulation. A (ed) Proc of the IDDRG 94:363–375 Hora P, Tong L (1994) Prediction methods for ductile sheet metal failure using FE simulation. A (ed) Proc of the IDDRG 94:363–375
15.
go back to reference Considère M (1885) L'emploi du fer et lacier Dans les constructions. Annales Des Pontset Chansses 9:574–775 Considère M (1885) L'emploi du fer et lacier Dans les constructions. Annales Des Pontset Chansses 9:574–775
16.
go back to reference Ofenheimer A, Kitting D, Koplenig M, Grass H, Volk W, Lipp A, Illig R, Kupfer H (2008) Cost effective strategy to predict formability in two-step sheet forming operations. Part A: Proceedings of Numisheet 2008:265–269 Ofenheimer A, Kitting D, Koplenig M, Grass H, Volk W, Lipp A, Illig R, Kupfer H (2008) Cost effective strategy to predict formability in two-step sheet forming operations. Part A: Proceedings of Numisheet 2008:265–269
18.
go back to reference Volk W, Weiss H, Jocham D, Suh J (2013) Phenomenological and numerical description of localized necking using generalized forming limit concept. in Proceedings of IDDRG 2013:16–21 Volk W, Weiss H, Jocham D, Suh J (2013) Phenomenological and numerical description of localized necking using generalized forming limit concept. in Proceedings of IDDRG 2013:16–21
19.
go back to reference Volk W, Jocham D, Gaber C, Böttcher O (2015) Neue Methodik zur Vorhersage des Materialversagens bei nicht-linearen Dehnwegen. 35.-EFB Kolloquium 2015:201–214 Volk W, Jocham D, Gaber C, Böttcher O (2015) Neue Methodik zur Vorhersage des Materialversagens bei nicht-linearen Dehnwegen. 35.-EFB Kolloquium 2015:201–214
22.
go back to reference Schmaltz S, Willner K (2014) Comparison of different biaxial tests for the inverse identification of sheet steel material parameters. Strain 50:389–403. doi:10.1111/str CrossRef Schmaltz S, Willner K (2014) Comparison of different biaxial tests for the inverse identification of sheet steel material parameters. Strain 50:389–403. doi:10.​1111/​str CrossRef
23.
go back to reference Jocham D, Gaber C, Böttcher O, Volk W (2015) Prediction of formability for multi-linear strain paths. Proc of FTF 2015:59–64 Jocham D, Gaber C, Böttcher O, Volk W (2015) Prediction of formability for multi-linear strain paths. Proc of FTF 2015:59–64
24.
go back to reference Leotoing L, Guines D (2015) Investigations of the effect of strain path changes on forming limit curves using an in-plane biaxial tensile test. Int J Mech Sci 99:21–28CrossRef Leotoing L, Guines D (2015) Investigations of the effect of strain path changes on forming limit curves using an in-plane biaxial tensile test. Int J Mech Sci 99:21–28CrossRef
25.
go back to reference Jocham D, Baumann M, Volk W (2015) Optimization of a cruciform specimen for biaxial tensile test for forming limit determination. Material Testing 57:205–213. doi:10.3139/120.110707 CrossRef Jocham D, Baumann M, Volk W (2015) Optimization of a cruciform specimen for biaxial tensile test for forming limit determination. Material Testing 57:205–213. doi:10.​3139/​120.​110707 CrossRef
26.
Metadata
Title
Experimental prediction of sheet metal formability of AW-5754 for non-linear strain paths by using a cruciform specimen and a blank holder with adjustable draw beads on a sheet metal testing machine
Authors
David Jocham
Christian Gaber
Ole Böttcher
Patrik Wiedemann
Wolfram Volk
Publication date
21-07-2016
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 4/2017
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-016-1304-9

Other articles of this Issue 4/2017

International Journal of Material Forming 4/2017 Go to the issue

Premium Partners