Skip to main content
Top
Published in: Journal of Engineering Thermophysics 1/2022

01-03-2022

Experimental Study of Thermal Conductivity and Viscosity of Water-Based MWCNT-Y2O3 Hybrid Nanofluid with Surfactant

Authors: O. Al-Oran, F. Lezsovits

Published in: Journal of Engineering Thermophysics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is an overwhelming demand in many solar applications to evaluate and improve the thermal properties (dynamic viscosity and thermal conductivity) of working fluids to ensure that those fluids are the most efficient. This can be achieved via scattering of tiny solid (mono or hybrid) nanomaterials into conventional fluids. In this experimental study, the thermal properties of a distilled water-based MWCNT+Y2O3 combination with a 20:80 weight ratio were experimentally investigated. The proposed hybrid nanofluid, prepared by a two-step method, with Gum Arabic as a surfactant, had half total volume concentrations of (0.01–0.2% vol) in the temperature range of 20–60°C, where stability has been reached and checked with various technics. The results demonstrate that the thermal conductivity coefficient increases with both temperature and concentration, especially at high concentrations and high temperatures. The maximum enhancement observed reaches 13% at a volume concentration of 0.2% and temperature of 60°C. As for the viscosity, the relative viscosity was obtained for various temperatures and concentrations, the maximum results reaching 8.85 at a concentration equal to 0.2%. Finally, correlations for the hybrid nanofluid thermal conductivity ratio and relative viscosity were suggested under the mentioned limitations, and the calculated experimental results demonstrate good accuracy with the proposed correlations with R2 = 0.99 for the thermal conductivity ratio and R2 = 0.95 for the relative viscosity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kamel, M.S., Al-Oran, O., and Lezsovits, F., Thermal Conductivity of Al2O3 and CeO2 Nanoparticles and Their Hybrid Based Water Nanofluids: An Experimental Study, Period. Polytech. Chem. Eng., 2021, vol. 65, no. 1, pp. 50–60.CrossRef Kamel, M.S., Al-Oran, O., and Lezsovits, F., Thermal Conductivity of Al2O3 and CeO2 Nanoparticles and Their Hybrid Based Water Nanofluids: An Experimental Study, Period. Polytech. Chem. Eng., 2021, vol. 65, no. 1, pp. 50–60.CrossRef
2.
go back to reference Al-Oran, O. and Lezsovits, F., A Hybrid Nanofluid of Alumina and Tungsten Oxide for Performance Enhancement of a Parabolic Trough Collector under the Weather Conditions of Budapest, Appl. Sci., 2021, vol. 11, no. 11, p. 4946.CrossRef Al-Oran, O. and Lezsovits, F., A Hybrid Nanofluid of Alumina and Tungsten Oxide for Performance Enhancement of a Parabolic Trough Collector under the Weather Conditions of Budapest, Appl. Sci., 2021, vol. 11, no. 11, p. 4946.CrossRef
3.
go back to reference Raman, N.S., Prabhu, K.S., and Kandasamy, R., Heat Transfer Effects on Hiemenz Flow of Nanofluid over a Porous Wedge Sheet in the Presence of Suction/Injection Due to Solar Energy: Lie Group Transformation, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 1, pp. 66–78.CrossRef Raman, N.S., Prabhu, K.S., and Kandasamy, R., Heat Transfer Effects on Hiemenz Flow of Nanofluid over a Porous Wedge Sheet in the Presence of Suction/Injection Due to Solar Energy: Lie Group Transformation, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 1, pp. 66–78.CrossRef
4.
go back to reference Al-Oran, O. and Lezsovits, F., Enhance Thermal Efficiency of Parabolic Trough Collector Using Tungsten Oxide/Syltherm 800 Nanofluid, Pollack Period., 2020, vol. 15, no. 2, pp. 187–198.CrossRef Al-Oran, O. and Lezsovits, F., Enhance Thermal Efficiency of Parabolic Trough Collector Using Tungsten Oxide/Syltherm 800 Nanofluid, Pollack Period., 2020, vol. 15, no. 2, pp. 187–198.CrossRef
5.
go back to reference Jakhar, S., Paliwal, M.K., and Purohit, N., Assessment of Alumina/Water Nanofluid in a Glazed Tube and Sheet Photovoltaic/Thermal System with Geothermal Cooling, J. Therm. An. Calorim., 2021, pp. 1–18. Jakhar, S., Paliwal, M.K., and Purohit, N., Assessment of Alumina/Water Nanofluid in a Glazed Tube and Sheet Photovoltaic/Thermal System with Geothermal Cooling, J. Therm. An. Calorim., 2021, pp. 1–18.
6.
go back to reference Meena, P., et al., Enhancement of the Performance Heat Transfer of a Thermosyphon with Fin and without Fin Heat Exchangers Using Cu-Nanofluid as Working Fluids, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 4, pp. 331–340.CrossRef Meena, P., et al., Enhancement of the Performance Heat Transfer of a Thermosyphon with Fin and without Fin Heat Exchangers Using Cu-Nanofluid as Working Fluids, J. Eng. Phys. Thermophys., 2014, vol. 23, no. 4, pp. 331–340.CrossRef
7.
go back to reference Kaood, A., et al., Performance Analysis and Particle Swarm Optimization of Molten Salt-Based Nanofluids in Parabolic Trough Concentrators, Renew. Energy, 2021, vol. 177, pp. 1045–1062.CrossRef Kaood, A., et al., Performance Analysis and Particle Swarm Optimization of Molten Salt-Based Nanofluids in Parabolic Trough Concentrators, Renew. Energy, 2021, vol. 177, pp. 1045–1062.CrossRef
8.
go back to reference Minea, A. and Moldoveanu, M., Studies on Al2O3, CuO, and TiO2 Water-Based Nanofluids: A Comparative Approach in Laminar and Turbulent Flow, J. Eng. Phys. Thermophys., 2017, vol. 26, no. 2, pp. 291–301.CrossRef Minea, A. and Moldoveanu, M., Studies on Al2O3, CuO, and TiO2 Water-Based Nanofluids: A Comparative Approach in Laminar and Turbulent Flow, J. Eng. Phys. Thermophys., 2017, vol. 26, no. 2, pp. 291–301.CrossRef
9.
go back to reference Al-Oran, O. and Lezsovits, F., Thermal Performance of Inserting Hybrid Nanofluid in Parabolic Trough Collector, Pollack Period., 2021. Al-Oran, O. and Lezsovits, F., Thermal Performance of Inserting Hybrid Nanofluid in Parabolic Trough Collector, Pollack Period., 2021.
10.
go back to reference Allahyari, S., et al., Investigating the Effects of Nanoparticles Mean Diameter on Laminar Mixed Convection of a Nanofluid Through an Inclined Tube with Circumferentially Nonuniform Heat Flux, J. Eng. Phys. Thermophys., 2016, vol. 25, no. 4, pp. 563–575.MathSciNetCrossRef Allahyari, S., et al., Investigating the Effects of Nanoparticles Mean Diameter on Laminar Mixed Convection of a Nanofluid Through an Inclined Tube with Circumferentially Nonuniform Heat Flux, J. Eng. Phys. Thermophys., 2016, vol. 25, no. 4, pp. 563–575.MathSciNetCrossRef
11.
go back to reference Asadi, A., et al., The Effect of Surfactant and Sonication Time on the Stability and Thermal Conductivity of Water-Based Nanofluid Containing Mg(OH) 2 Nanoparticles: An Experimental Investigation, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 191–198.CrossRef Asadi, A., et al., The Effect of Surfactant and Sonication Time on the Stability and Thermal Conductivity of Water-Based Nanofluid Containing Mg(OH) 2 Nanoparticles: An Experimental Investigation, Int. J. Heat Mass Transfer, 2017, vol. 108, pp. 191–198.CrossRef
12.
go back to reference Babar, H. and Ali, H.M., Towards Hybrid Nanofluids: Preparation, Thermophysical Properties, Applications, and Challenges, J. Mol. Liq., 2019, vol. 281, pp. 598–633.CrossRef Babar, H. and Ali, H.M., Towards Hybrid Nanofluids: Preparation, Thermophysical Properties, Applications, and Challenges, J. Mol. Liq., 2019, vol. 281, pp. 598–633.CrossRef
13.
go back to reference Noorzadeh, S., et al., Thermal Conductivity, Viscosity and Heat Transfer Process in Nanofluids: A Critical Review, J. Compos. Compd., 2020, vol. 2, no. 5, pp. 175–192.CrossRef Noorzadeh, S., et al., Thermal Conductivity, Viscosity and Heat Transfer Process in Nanofluids: A Critical Review, J. Compos. Compd., 2020, vol. 2, no. 5, pp. 175–192.CrossRef
14.
go back to reference Al-Oran, O. and Lezsovits, F., Recent Experimental Enhancement Techniques Applied in the Receiver Part of the Parabolic Trough Collector–A Review, Int. Rev. Appl. Sci. Eng., 2020, vol. 11, no. 3; DOI:10.1556/1848.2020.00055.CrossRef Al-Oran, O. and Lezsovits, F., Recent Experimental Enhancement Techniques Applied in the Receiver Part of the Parabolic Trough Collector–A Review, Int. Rev. Appl. Sci. Eng., 2020, vol. 11, no. 3; DOI:10.1556/1848.2020.00055.CrossRef
15.
go back to reference Said, Z., et al., Optimizing Density, Dynamic Viscosity, Thermal Conductivity and Specific Heat of a Hybrid Nanofluid Obtained Experimentally via ANFIS-Based Model and Modern Optimization, J. Mol. Liq., 2021, vol. 321, p. 114287.CrossRef Said, Z., et al., Optimizing Density, Dynamic Viscosity, Thermal Conductivity and Specific Heat of a Hybrid Nanofluid Obtained Experimentally via ANFIS-Based Model and Modern Optimization, J. Mol. Liq., 2021, vol. 321, p. 114287.CrossRef
16.
go back to reference Sadri, R., et al., An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes, Nanoscale Res. Lett., 2014, vol. 9, no. 1, pp. 1–16.CrossRef Sadri, R., et al., An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes, Nanoscale Res. Lett., 2014, vol. 9, no. 1, pp. 1–16.CrossRef
17.
go back to reference Phuoc, T.X., Massoudi, M., and Chen, R.-H., Viscosity and Thermal Conductivity of Nanofluids Containing Multi-Walled Carbon Nanotubes Stabilized by Chitosan, Int. J. Therm. Sci., 2011, vol. 50, no. 1, pp. 12–18.CrossRef Phuoc, T.X., Massoudi, M., and Chen, R.-H., Viscosity and Thermal Conductivity of Nanofluids Containing Multi-Walled Carbon Nanotubes Stabilized by Chitosan, Int. J. Therm. Sci., 2011, vol. 50, no. 1, pp. 12–18.CrossRef
18.
go back to reference Chopkar, M., Das, P., and Manna, I., Thermal Characterization of a Nanofluid Comprising Nanocrystalline ZrO2 Dispersed in Water and Ethylene Glycol, Philos Mag., 2007, vol. 87, no. 29, pp. 4433–4444.ADSCrossRef Chopkar, M., Das, P., and Manna, I., Thermal Characterization of a Nanofluid Comprising Nanocrystalline ZrO2 Dispersed in Water and Ethylene Glycol, Philos Mag., 2007, vol. 87, no. 29, pp. 4433–4444.ADSCrossRef
19.
go back to reference Devarajan, M., et al., Thermophysical Properties of CNT and CNT/Al2O3 Hybrid Nanofluid, Micro Nano Lett., 2018, vol. 13, no. 5, pp. 617–621.CrossRef Devarajan, M., et al., Thermophysical Properties of CNT and CNT/Al2O3 Hybrid Nanofluid, Micro Nano Lett., 2018, vol. 13, no. 5, pp. 617–621.CrossRef
20.
go back to reference Gupta, N., Gupta, S.M., and Sharma, S., Preparation of Stable Metal/COOH-MWCNT Hybrid Nanofluid, Mater. Today: Proc., 2020, vol. 36, pp. 649–656. Gupta, N., Gupta, S.M., and Sharma, S., Preparation of Stable Metal/COOH-MWCNT Hybrid Nanofluid, Mater. Today: Proc., 2020, vol. 36, pp. 649–656.
21.
go back to reference Kumar, D.D. and Arasu, A.V., A Comprehensive Review of Preparation, Characterization, Properties and Stability of Hybrid Nanofluids, Renew. Sustain. Energy Rev., 2018, vol. 81, pp. 1669–1689.CrossRef Kumar, D.D. and Arasu, A.V., A Comprehensive Review of Preparation, Characterization, Properties and Stability of Hybrid Nanofluids, Renew. Sustain. Energy Rev., 2018, vol. 81, pp. 1669–1689.CrossRef
22.
go back to reference Nine, M.J., et al., Investigation of Al2O3-MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 6, pp. 4553–4559.CrossRef Nine, M.J., et al., Investigation of Al2O3-MWCNTs Hybrid Dispersion in Water and Their Thermal Characterization, J. Nanosci. Nanotechnol., 2012, vol. 12, no. 6, pp. 4553–4559.CrossRef
23.
go back to reference Asadi, A., et al., Heat Transfer Efficiency of Al2O3-MWCNT/Thermal Oil Hybrid Nanofluid as a Cooling Fluid in Thermal and Energy Management Applications: An Experimental and Theoretical Investigation, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 474–486.CrossRef Asadi, A., et al., Heat Transfer Efficiency of Al2O3-MWCNT/Thermal Oil Hybrid Nanofluid as a Cooling Fluid in Thermal and Energy Management Applications: An Experimental and Theoretical Investigation, Int. J. Heat Mass Transfer, 2018, vol. 117, pp. 474–486.CrossRef
24.
go back to reference Zareie, A. and Akbari, M., Hybrid Nanoparticles Effects on Rheological Behavior of Water-EG Coolant Under Different Temperatures: An Experimental Study, J. Mol. Liq., 2017, vol. 230, pp. 408–414.CrossRef Zareie, A. and Akbari, M., Hybrid Nanoparticles Effects on Rheological Behavior of Water-EG Coolant Under Different Temperatures: An Experimental Study, J. Mol. Liq., 2017, vol. 230, pp. 408–414.CrossRef
25.
go back to reference Esfe, M.H. and Esfandeh, S., Investigation of Rheological Behavior of Hybrid Oil Based Nanolubricant-Coolant Applied in Car Engines and Cooling Equipments, Appl. Therm. Eng., 2018, vol. 131, pp. 1026–1033.CrossRef Esfe, M.H. and Esfandeh, S., Investigation of Rheological Behavior of Hybrid Oil Based Nanolubricant-Coolant Applied in Car Engines and Cooling Equipments, Appl. Therm. Eng., 2018, vol. 131, pp. 1026–1033.CrossRef
26.
go back to reference Esfe, M.H., et al., A Novel Applicable Experimental Study on the Thermal Behavior of SWCNTs (60%)-MgO (40%)/EG Hybrid Nanofluid by Focusing on the Thermal Conductivity, Powder Technol., 2019, vol. 342, pp. 998–1007.CrossRef Esfe, M.H., et al., A Novel Applicable Experimental Study on the Thermal Behavior of SWCNTs (60%)-MgO (40%)/EG Hybrid Nanofluid by Focusing on the Thermal Conductivity, Powder Technol., 2019, vol. 342, pp. 998–1007.CrossRef
27.
go back to reference Tiwari, A.K., et al., 4S Consideration (Synthesis, Sonication, Surfactant, Stability) for the Thermal Conductivity of CeO2 with MWCNT and Water Based Hybrid Nanofluid: An Experimental Assessment, Coll. Surf., Physic. Eng. Asp., 2021, vol. 610, p. 125918.CrossRef Tiwari, A.K., et al., 4S Consideration (Synthesis, Sonication, Surfactant, Stability) for the Thermal Conductivity of CeO2 with MWCNT and Water Based Hybrid Nanofluid: An Experimental Assessment, Coll. Surf., Physic. Eng. Asp., 2021, vol. 610, p. 125918.CrossRef
28.
go back to reference Al-Oran, O., Lezsovits, F., and Aljawabrah, A., Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids, J. Therm. An. Calorim., 2020, vol. 140, no. 3, pp. 1579–1596.CrossRef Al-Oran, O., Lezsovits, F., and Aljawabrah, A., Exergy and Energy Amelioration for Parabolic Trough Collector Using Mono and Hybrid Nanofluids, J. Therm. An. Calorim., 2020, vol. 140, no. 3, pp. 1579–1596.CrossRef
29.
go back to reference Bellos, E. and Tzivanidis, C., Thermal Analysis of Parabolic Trough Collector Operating with Mono and Hybrid Nanofluids, Sust. Energy Technol. Assess., 2018, vol. 26, pp. 105–115.CrossRef Bellos, E. and Tzivanidis, C., Thermal Analysis of Parabolic Trough Collector Operating with Mono and Hybrid Nanofluids, Sust. Energy Technol. Assess., 2018, vol. 26, pp. 105–115.CrossRef
30.
go back to reference Inc., U.R.N. Nanomaterials Catalog, 2021; available from: https://www.us-nano.com/home Inc., U.R.N. Nanomaterials Catalog, 2021; available from: https://​www.​us-nano.​com/​home
31.
go back to reference Sharma, S. and Gupta, S.M., Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review, Exp. Therm. Fluid Sci., 2016, vol. 79, pp. 202–212.CrossRef Sharma, S. and Gupta, S.M., Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review, Exp. Therm. Fluid Sci., 2016, vol. 79, pp. 202–212.CrossRef
32.
go back to reference Javadian, S., et al., Dispersion Stability of Multi-Walled Carbon Nanotubes in Catanionic Surfactant Mixtures, Coll. Surf. Physic. Eng. Asp., 2017, vol. 531, pp. 141–149.CrossRef Javadian, S., et al., Dispersion Stability of Multi-Walled Carbon Nanotubes in Catanionic Surfactant Mixtures, Coll. Surf. Physic. Eng. Asp., 2017, vol. 531, pp. 141–149.CrossRef
33.
go back to reference Lemmon, E.W, McLinden, M.O., and Friend, D.G., Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2005. Lemmon, E.W, McLinden, M.O., and Friend, D.G., Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2005.
34.
go back to reference Lanjewar, A., et al., Intensified Thermal Conductivity and Convective Heat Transfer of Ultrasonically Prepared CuO–Polyaniline Nanocomposite Based Nanofluids in Helical Coil Heat Exchanger, Period. Polytech. Chem. Eng., 2020, vol. 64, no. 2, pp. 271–282.CrossRef Lanjewar, A., et al., Intensified Thermal Conductivity and Convective Heat Transfer of Ultrasonically Prepared CuO–Polyaniline Nanocomposite Based Nanofluids in Helical Coil Heat Exchanger, Period. Polytech. Chem. Eng., 2020, vol. 64, no. 2, pp. 271–282.CrossRef
35.
go back to reference Moldoveanu, G.M., et al., Al2O3/TiO2 Hybrid Nanofluids Thermal Conductivity, J. Therm. An. Calorim., 2019, vol. 137, no. 2, pp. 583–592.CrossRef Moldoveanu, G.M., et al., Al2O3/TiO2 Hybrid Nanofluids Thermal Conductivity, J. Therm. An. Calorim., 2019, vol. 137, no. 2, pp. 583–592.CrossRef
Metadata
Title
Experimental Study of Thermal Conductivity and Viscosity of Water-Based MWCNT-Y2O3 Hybrid Nanofluid with Surfactant
Authors
O. Al-Oran
F. Lezsovits
Publication date
01-03-2022
Publisher
Pleiades Publishing
Published in
Journal of Engineering Thermophysics / Issue 1/2022
Print ISSN: 1810-2328
Electronic ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822010088

Other articles of this Issue 1/2022

Journal of Engineering Thermophysics 1/2022 Go to the issue

Premium Partners