Skip to main content
Top

2021 | OriginalPaper | Chapter

Experimental Study on Shallow Water Sloshing

Authors : Saravanan Gurusamy, Deepak Kumar

Published in: Advances in Structural Vibration

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sloshing of liquid in a partially filled container, subjected to higher amplitude of dynamic load, is a complex phenomenon. In shallow water conditions, the natural frequency of sloshing depends on the amplitude of excitation. Sloshing frequency tends to change with increase in amplitude of excitation. The change in natural frequency is critical if we use the sloshing tank as a passive damping device, such as Tuned Liquid Damper (TLD) for offshore structures or onshore structures. A small change in sloshing frequency in TLD may affect the structural vibration control significantly. Therefore, it is essential to comprehend the natural frequency of shallow water sloshing. Experimental study is one of the best ways to understand the physical insights of change in sloshing frequency. Experimental studies are conducted to study the jump in sloshing frequency at different excitation amplitudes. Several rectangular tanks (1163, 1064, 951, and 844 mm) under different water depths (60, 50, and 40 mm) are taken for the study to generalize the results. The liquid tank is mounted on a uni-directional horizontal shake table, which is subjected to simple harmonic motion. The amplitude of excitation varied from 5 to 50 mm. A single capacitance-type wave probe is used at the end of the tank wall to measure the wave surface elevation. The wave elevation increases as the excitation frequency reaches toward the natural frequency of sloshing. The measured liquid sloshing frequency, at the resonance condition, is considered as actual sloshing frequency of liquid in tank. This sloshing frequency changes with the amplitude of excitation and shows the sudden jump in frequency from a particular amplitude of excitation. The objective of this paper is to generalize the relation between the jump frequency ratio (ratio of jump frequency to linear frequency) and the non-dimensional amplitude of excitation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abramson HN, Ransleben GE Jr (1961) Representation of fuel sloshing in cylindrical tanks by an equivalent mechanical model. ARS J 31:542–544CrossRef Abramson HN, Ransleben GE Jr (1961) Representation of fuel sloshing in cylindrical tanks by an equivalent mechanical model. ARS J 31:542–544CrossRef
2.
go back to reference Bauer HF (1960) Mechanical model for the description of the Liquid motion in a rectangular container, Lockheed-Co, RN ER-8559 Bauer HF (1960) Mechanical model for the description of the Liquid motion in a rectangular container, Lockheed-Co, RN ER-8559
3.
go back to reference Graham EW, Rodrigue AM (1952) The characteristics of fuel motion which affect airplane dynamics. J Appl Mech 74:381–388 Graham EW, Rodrigue AM (1952) The characteristics of fuel motion which affect airplane dynamics. J Appl Mech 74:381–388
4.
go back to reference Hill DF (2003) Transient and steady-state amplitudes of forced waves in rectangular basins. Phys Fluids 15(6):1576–1587MathSciNetCrossRef Hill DF (2003) Transient and steady-state amplitudes of forced waves in rectangular basins. Phys Fluids 15(6):1576–1587MathSciNetCrossRef
5.
go back to reference Kana DD (1987) A model for nonlinear rotary slosh in propellant tanks. J Spacecr Rockets 24(3, 4):169–177 Kana DD (1987) A model for nonlinear rotary slosh in propellant tanks. J Spacecr Rockets 24(3, 4):169–177
6.
go back to reference Modi VJ, Welt F (1988) Damping of wind induced oscillation through liquid sloshing. J Wind Eng Ind Aerodyn 30:85–94CrossRef Modi VJ, Welt F (1988) Damping of wind induced oscillation through liquid sloshing. J Wind Eng Ind Aerodyn 30:85–94CrossRef
7.
go back to reference Sayar BA, Baumgarten JR (1982) Linear and nonlinear analysis of fluid slosh dampers. AIAA J 20(11):1534–1538CrossRef Sayar BA, Baumgarten JR (1982) Linear and nonlinear analysis of fluid slosh dampers. AIAA J 20(11):1534–1538CrossRef
8.
go back to reference Lee SC, Reddy DV (1982) Frequency tuning of offshore platforms by liquid sloshing. Appl Ocean Res 4(4):226–231CrossRef Lee SC, Reddy DV (1982) Frequency tuning of offshore platforms by liquid sloshing. Appl Ocean Res 4(4):226–231CrossRef
9.
go back to reference Fujino Y, Pacheco BM, Sun LM, Chaiseri P, Isobe M (1989) Simulation of nonlinear waves in rectangular tuned liquid damper (TLD) and its verification. JSCE, J Struct Eng 35A:561–574 Fujino Y, Pacheco BM, Sun LM, Chaiseri P, Isobe M (1989) Simulation of nonlinear waves in rectangular tuned liquid damper (TLD) and its verification. JSCE, J Struct Eng 35A:561–574
10.
go back to reference Sun LM, Fujino Y, Koga K (1995) A model of Tuned Liquid Damper for suppressing pitching motions of structures. Earthq Eng Struct Dyn 24:625–636CrossRef Sun LM, Fujino Y, Koga K (1995) A model of Tuned Liquid Damper for suppressing pitching motions of structures. Earthq Eng Struct Dyn 24:625–636CrossRef
11.
go back to reference Warnitchai P, Pinkaew T (1998) Modeling of liquid sloshing in rectangular tanks with flow-dampening devices. Eng Struct 20:593–600CrossRef Warnitchai P, Pinkaew T (1998) Modeling of liquid sloshing in rectangular tanks with flow-dampening devices. Eng Struct 20:593–600CrossRef
12.
go back to reference Kaneko S, Ishikawa M (1999) Modeling of tuned liquid damper with submerged nets. J Press Vessel Technol 121(3):334–343CrossRef Kaneko S, Ishikawa M (1999) Modeling of tuned liquid damper with submerged nets. J Press Vessel Technol 121(3):334–343CrossRef
13.
go back to reference Tait MJ, EL Damatty AA, Isyumov N, Siddique MR (2005) Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens. J Fluids Struct 20:1007–1023 Tait MJ, EL Damatty AA, Isyumov N, Siddique MR (2005) Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens. J Fluids Struct 20:1007–1023
14.
go back to reference Tait MJ (2008) Modelling and preliminary design of a structure-TLD system. Eng Struct 30:2644–2655CrossRef Tait MJ (2008) Modelling and preliminary design of a structure-TLD system. Eng Struct 30:2644–2655CrossRef
15.
go back to reference Wei ZJ, Faltinsen OM, Lugni C, Yue QJ (2015) Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions. Phys Fluids 27:032104(1–24) Wei ZJ, Faltinsen OM, Lugni C, Yue QJ (2015) Sloshing-induced slamming in screen-equipped rectangular tanks in shallow-water conditions. Phys Fluids 27:032104(1–24)
16.
go back to reference Ockendon JR, Ockendon H (1973) Resonant surface waves. J Fluid Mech 59:397–413CrossRef Ockendon JR, Ockendon H (1973) Resonant surface waves. J Fluid Mech 59:397–413CrossRef
17.
go back to reference Lepelletier TG, Raichlen F (1988) Nonlinear oscillations in rectangular tanks. J Eng Mech ASCE 114(1):1–23CrossRef Lepelletier TG, Raichlen F (1988) Nonlinear oscillations in rectangular tanks. J Eng Mech ASCE 114(1):1–23CrossRef
18.
go back to reference Sun LM, Fujino Y, Chaiseri P, Pacheco BM (1992) The properties of Tuned Liquid Dampers using a TMD analogy. Earthq Eng Struct Dyn 24:967–976CrossRef Sun LM, Fujino Y, Chaiseri P, Pacheco BM (1992) The properties of Tuned Liquid Dampers using a TMD analogy. Earthq Eng Struct Dyn 24:967–976CrossRef
19.
go back to reference Khosropour R, Cole SL, Strayer TD (1995) Resonant free surface waves in a rectangular basin. Wave Motion 22:187–199CrossRef Khosropour R, Cole SL, Strayer TD (1995) Resonant free surface waves in a rectangular basin. Wave Motion 22:187–199CrossRef
20.
go back to reference Ikeda T, Nakagawa N (1997) Non-Linear vibrations of a structure caused by water sloshing in a rectangular tank. J Sound Vib 201(1):23–41CrossRef Ikeda T, Nakagawa N (1997) Non-Linear vibrations of a structure caused by water sloshing in a rectangular tank. J Sound Vib 201(1):23–41CrossRef
21.
go back to reference Reed D, Yu J, Yeh H, Gardarsson S (1998) An Investigation of Tuned Liquid Dampers under large amplitude excitation. J Eng Mech ASCE 124:405–413CrossRef Reed D, Yu J, Yeh H, Gardarsson S (1998) An Investigation of Tuned Liquid Dampers under large amplitude excitation. J Eng Mech ASCE 124:405–413CrossRef
22.
go back to reference Frandsen JB (2004) Sloshing motions in excited tanks. J Comput Phys 196(1):53–87CrossRef Frandsen JB (2004) Sloshing motions in excited tanks. J Comput Phys 196(1):53–87CrossRef
23.
go back to reference Frandsen JB (2005) Numerical predictions of tuned liquid tank structural systems. J Fluids Struct 20:309–329CrossRef Frandsen JB (2005) Numerical predictions of tuned liquid tank structural systems. J Fluids Struct 20:309–329CrossRef
24.
go back to reference Gardarsson SM, Yeh H (2007) Hysteresis in shallow water sloshing. J Eng Mech 133(10):1093–1100CrossRef Gardarsson SM, Yeh H (2007) Hysteresis in shallow water sloshing. J Eng Mech 133(10):1093–1100CrossRef
25.
go back to reference Forbes LK (2010) Sloshing of an ideal fluid in a horizontally forced rectangular tank. J Eng Math 66:395–412CrossRef Forbes LK (2010) Sloshing of an ideal fluid in a horizontally forced rectangular tank. J Eng Math 66:395–412CrossRef
26.
go back to reference Yu J, Wakahara T, Reed DA (1999) A non-linear numerical model of the Tuned Liquid Damper. Earthq Eng Struct Dyn 28:671–686CrossRef Yu J, Wakahara T, Reed DA (1999) A non-linear numerical model of the Tuned Liquid Damper. Earthq Eng Struct Dyn 28:671–686CrossRef
Metadata
Title
Experimental Study on Shallow Water Sloshing
Authors
Saravanan Gurusamy
Deepak Kumar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5862-7_46

Premium Partners