Skip to main content
Top

2017 | OriginalPaper | Chapter

Experimental Study on Thermal Comfort of Indoor Environment

Authors : Huimin Hu, Rui Wang, Chaoyi Zhao, Hong Luo, Li Ding, Yifen Qiu

Published in: Advances in Ergonomics Modeling, Usability & Special Populations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to study the range of comfort environment parameters, subjective assessment and objective assessment are used in this research. The main purpose of this study is to determine the temperature and humidity range, acceptable temperature fluctuation, acceptable air flow rate and acceptable vertical air temperature difference under the thermal comfort environment in summer and winter. The thermal comfort environment should make the PMV between −0.5 and +0.5 which is recommended by international standard ISO7730. Following this principle, the comfort temperature ranges in summer and winter are determined respectively, comfort temperature range is 25–28 °C in summer and 22–25 °C in winter. Under the thermal comfort environment condition, the biggest acceptable temperature fluctuation is obtained and is 0.6 °C and the biggest acceptable air flow rate is 0.5 m/s in summer. In winter, if the vertical air temperature difference is higher than 3.2 °C, the subjects feel comfortable.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Xu, X., Li, B.: Influence of indoor thermal environment on thermal comfort of human body. J. Chongqing Univ. 4(28), 102–105 (2005) Xu, X., Li, B.: Influence of indoor thermal environment on thermal comfort of human body. J. Chongqing Univ. 4(28), 102–105 (2005)
2.
go back to reference Li, S., Lian, Z.: Discussions on the application of Fanger’s thermal comfortable theory. In: Shanghai Refrigeration Institute Academic Annual Conference (2007) Li, S., Lian, Z.: Discussions on the application of Fanger’s thermal comfortable theory. In: Shanghai Refrigeration Institute Academic Annual Conference (2007)
3.
go back to reference Holmér, I., Nilsson, H., Bohm, M., et al.: Thermal aspects of vehicle comfort. Appl. Hum. Sci. J. Physiol. Anthropol. 14(4), 159–165 (1995)CrossRef Holmér, I., Nilsson, H., Bohm, M., et al.: Thermal aspects of vehicle comfort. Appl. Hum. Sci. J. Physiol. Anthropol. 14(4), 159–165 (1995)CrossRef
4.
go back to reference Ye, H., Wei, R.: Evaluation indices of thermal environment based on thermal manikin. Chin. J. Ergonomics 11(2), 26–28 (2005) Ye, H., Wei, R.: Evaluation indices of thermal environment based on thermal manikin. Chin. J. Ergonomics 11(2), 26–28 (2005)
5.
go back to reference Tanabe, S., Zhang, H., Arens, E.A., et al.: Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. Ashrae Trans. 100, 39–48 (1994) Tanabe, S., Zhang, H., Arens, E.A., et al.: Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. Ashrae Trans. 100, 39–48 (1994)
6.
go back to reference Zhu, Y.: Building Environment. China Building Industry Press, Beijing (2010) Zhu, Y.: Building Environment. China Building Industry Press, Beijing (2010)
7.
go back to reference Bedford, T.: The warmth factor in comfort at work. Rep. Industr. Health Res. 76(5), 45–60 (1936) Bedford, T.: The warmth factor in comfort at work. Rep. Industr. Health Res. 76(5), 45–60 (1936)
8.
go back to reference ASHRAE. ANSI/ASHRAE Standard 55-1992, Thermal Environmental Conditions for Human Occupancy. Atlanta, GA (1992) ASHRAE. ANSI/ASHRAE Standard 55-1992, Thermal Environmental Conditions for Human Occupancy. Atlanta, GA (1992)
9.
go back to reference Nilsson, H.O., Holmér, I.: Comfort climate evaluation with thermal manikin methods and computer simulation models. Indoor Air 13(1), 28–37 (2003)CrossRef Nilsson, H.O., Holmér, I.: Comfort climate evaluation with thermal manikin methods and computer simulation models. Indoor Air 13(1), 28–37 (2003)CrossRef
10.
go back to reference Liu, W., Lian, Z., Liu, Y.: Heart rate variability at different thermal comfort levels. Eur. J. Appl. Physiol. 103(3), 361–366 (2008)CrossRef Liu, W., Lian, Z., Liu, Y.: Heart rate variability at different thermal comfort levels. Eur. J. Appl. Physiol. 103(3), 361–366 (2008)CrossRef
Metadata
Title
Experimental Study on Thermal Comfort of Indoor Environment
Authors
Huimin Hu
Rui Wang
Chaoyi Zhao
Hong Luo
Li Ding
Yifen Qiu
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-41685-4_35

Premium Partner