Skip to main content
Top

2023 | OriginalPaper | Chapter

Explaining Predictions by Characteristic Rules

Authors : Amr Alkhatib, Henrik Boström, Michalis Vazirgiannis

Published in: Machine Learning and Knowledge Discovery in Databases

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Characteristic rules have been advocated for their ability to improve interpretability over discriminative rules within the area of rule learning. However, the former type of rule has not yet been used by techniques for explaining predictions. A novel explanation technique, called CEGA (Characteristic Explanatory General Association rules), is proposed, which employs association rule mining to aggregate multiple explanations generated by any standard local explanation technique into a set of characteristic rules. An empirical investigation is presented, in which CEGA is compared to two state-of-the-art methods, Anchors and GLocalX, for producing local and aggregated explanations in the form of discriminative rules. The results suggest that the proposed approach provides a better trade-off between fidelity and complexity compared to the two state-of-the-art approaches; CEGA and Anchors significantly outperform GLocalX with respect to fidelity, while CEGA and GLocalX significantly outperform Anchors with respect to the number of generated rules. The effect of changing the format of the explanations of CEGA to discriminative rules and using LIME and SHAP as local explanation techniques instead of Anchors are also investigated. The results show that the characteristic explanatory rules still compete favorably with rules in the standard discriminative format. The results also indicate that using CEGA in combination with either SHAP or Anchors consistently leads to a higher fidelity compared to using LIME as the local explanation technique.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
All the datasets were obtained from https://​www.​openml.​org except Adult, German credit, and Compas.
 
Literature
1.
go back to reference Ribeiro, M., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144 (2016) Ribeiro, M., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1135–1144 (2016)
2.
go back to reference Lundberg, S., Lee, S.: A unified approach to interpreting model predictions. Adv. Neural. Inf. Process. Syst. 30, 4765–4774 (2017) Lundberg, S., Lee, S.: A unified approach to interpreting model predictions. Adv. Neural. Inf. Process. Syst. 30, 4765–4774 (2017)
3.
go back to reference Ribeiro, M., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI Conference on Artificial Intelligence (AAAI) (2018) Ribeiro, M., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI Conference on Artificial Intelligence (AAAI) (2018)
4.
go back to reference Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994) Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)
5.
go back to reference Kohavi, R., Becker, B., Sommerfield, D.: Improving simple Bayes. In: European Conference On Machine Learning (1997) Kohavi, R., Becker, B., Sommerfield, D.: Improving simple Bayes. In: European Conference On Machine Learning (1997)
6.
go back to reference Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy 23 (2021) Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review of machine learning interpretability methods. Entropy 23 (2021)
7.
go back to reference Molnar, C.: Interpretable machine learning: a guide for making black box models explainable (2019) Molnar, C.: Interpretable machine learning: a guide for making black box models explainable (2019)
8.
go back to reference Delaunay, J., Galárraga, L., Largouët, C.: Improving anchor-based explanations. In: CIKM 2020–29th ACM International Conference on Information and Knowledge Management, pp. 3269–3272, October 2020 Delaunay, J., Galárraga, L., Largouët, C.: Improving anchor-based explanations. In: CIKM 2020–29th ACM International Conference on Information and Knowledge Management, pp. 3269–3272, October 2020
9.
go back to reference Natesan Ramamurthy, K., Vinzamuri, B., Zhang, Y., Dhurandhar, A.: Model agnostic multilevel explanations. Adv. Neural. Inf. Process. Syst. 33, 5968–5979 (2020) Natesan Ramamurthy, K., Vinzamuri, B., Zhang, Y., Dhurandhar, A.: Model agnostic multilevel explanations. Adv. Neural. Inf. Process. Syst. 33, 5968–5979 (2020)
10.
go back to reference Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., Giannotti, F.: GLocalX - from local to global explanations of black box AI models. Artif. Intell. 294, 103457 (2021) Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., Giannotti, F.: GLocalX - from local to global explanations of black box AI models. Artif. Intell. 294, 103457 (2021)
11.
go back to reference Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system (2016,8) Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system (2016,8)
12.
go back to reference Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51 (2018) Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51 (2018)
13.
go back to reference Boström, H., Gurung, R., Lindgren, T., Johansson, U.: Explaining random forest predictions with association rules. Arch. Data Sci. Ser. A (Online First). 5, A05, 20 S. online (2018) Boström, H., Gurung, R., Lindgren, T., Johansson, U.: Explaining random forest predictions with association rules. Arch. Data Sci. Ser. A (Online First). 5, A05, 20 S. online (2018)
14.
go back to reference Bénard, C., Biau, G., Veiga, S., Scornet, E.: Interpretable random forests via rule extraction. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, vol. 130, pp. 937–945, 13 April 2021 Bénard, C., Biau, G., Veiga, S., Scornet, E.: Interpretable random forests via rule extraction. In: Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, vol. 130, pp. 937–945, 13 April 2021
15.
go back to reference Friedman, J., Popescu, B.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954 (2008) Friedman, J., Popescu, B.: Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954 (2008)
16.
go back to reference Ribeiro, M., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine learning. In: ICML Workshop on Human Interpretability in Machine Learning (WHI) (2016) Ribeiro, M., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine learning. In: ICML Workshop on Human Interpretability in Machine Learning (WHI) (2016)
18.
go back to reference Kliegr, T., Bahník, Š, Fürnkranz, J.: A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artif. Intell. 295, 103458 (2021)MathSciNetCrossRefMATH Kliegr, T., Bahník, Š, Fürnkranz, J.: A review of possible effects of cognitive biases on interpretation of rule-based machine learning models. Artif. Intell. 295, 103458 (2021)MathSciNetCrossRefMATH
19.
go back to reference Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3145–3153, 6 August 2017 Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3145–3153, 6 August 2017
20.
go back to reference Wang, Z., et al.: CNN explainer: learning convolutional neural networks with interactive visualization. IEEE Trans. Visual. Comput. Graph. (TVCG) (2020) Wang, Z., et al.: CNN explainer: learning convolutional neural networks with interactive visualization. IEEE Trans. Visual. Comput. Graph. (TVCG) (2020)
21.
go back to reference Turmeaux, T., Salleb, A., Vrain, C., Cassard, D.: Learning characteristic rules relying on quantified paths. In: Knowledge Discovery in Databases: PKDD 2003, 7th European Conference On Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, 22–26 September 2003, Proceedings, vol. 2838, pp. 471–482 (2003) Turmeaux, T., Salleb, A., Vrain, C., Cassard, D.: Learning characteristic rules relying on quantified paths. In: Knowledge Discovery in Databases: PKDD 2003, 7th European Conference On Principles and Practice of Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, 22–26 September 2003, Proceedings, vol. 2838, pp. 471–482 (2003)
23.
go back to reference Cohen, W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123 (1995) Cohen, W.: Fast effective rule induction. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 115–123 (1995)
26.
go back to reference Friedman, M.: A correction: the use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 34, 109–109 (1939) Friedman, M.: A correction: the use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 34, 109–109 (1939)
27.
go back to reference Nemenyi, P.: Distribution-Free Multiple Comparisons. Princeton University (1963) Nemenyi, P.: Distribution-Free Multiple Comparisons. Princeton University (1963)
29.
go back to reference Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling LIME and SHAP: adversarial attacks on post hoc explanation methods. In: AAAI/ACM Conference on AI, Ethics, and Society (AIES) (2020) Slack, D., Hilgard, S., Jia, E., Singh, S., Lakkaraju, H.: Fooling LIME and SHAP: adversarial attacks on post hoc explanation methods. In: AAAI/ACM Conference on AI, Ethics, and Society (AIES) (2020)
30.
go back to reference Loyola-González, O.: Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019) Loyola-González, O.: Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019)
Metadata
Title
Explaining Predictions by Characteristic Rules
Authors
Amr Alkhatib
Henrik Boström
Michalis Vazirgiannis
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-26387-3_24

Premium Partner