Skip to main content
Top

2018 | OriginalPaper | Chapter

Explorable Families of Graphs

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graph exploration is one of the fundamental tasks performed by a mobile agent in a graph. An n-node graph has unlabeled nodes, and all ports at any node of degree d are arbitrarily numbered \(0,\dots , d-1\). A mobile agent, initially situated at some starting node v, has to visit all nodes of the graph and stop. In the absence of any initial knowledge of the graph the task of deterministic exploration is often impossible. On the other hand, for some families of graphs it is possible to design deterministic exploration algorithms working for any graph of the family. We call such families of graphs explorable. Examples of explorable families are all finite families of graphs, as well as the family of all trees.
In this paper we study the problem of which families of graphs are explorable. We characterize all such families, and then ask the question whether there exists a universal deterministic algorithm that, given an explorable family of graphs, explores any graph of this family, without knowing which graph of the family is being explored. The answer to this question turns out to depend on how the explorable family is given to the hypothetical universal algorithm. If the algorithm can get the answer to any yes/no question about the family, then such a universal algorithm can be constructed. If, on the other hand, the algorithm can be only given an algorithmic description of the input explorable family, then such a universal deterministic algorithm does not exist.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of 20th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223 (1979) Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of 20th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1979), pp. 218–223 (1979)
3.
go back to reference Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152, 155–172 (1999)MathSciNetCrossRef Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152, 155–172 (1999)MathSciNetCrossRef
4.
5.
go back to reference Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176, 1–21 (2002)MathSciNetCrossRef Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.P.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176, 1–21 (2002)MathSciNetCrossRef
6.
go back to reference Bender, M.A., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 75–85 (1994) Bender, M.A., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 75–85 (1994)
7.
go back to reference Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18, 231–254 (1995) Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18, 231–254 (1995)
8.
go back to reference Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM J. Comput. 26, 110–137 (1997)MathSciNetCrossRef Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM J. Comput. 26, 110–137 (1997)MathSciNetCrossRef
10.
go back to reference Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment I: the rectilinear case. J. ACM 45, 215–245 (1998)MathSciNetCrossRef Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environment I: the rectilinear case. J. ACM 45, 215–245 (1998)MathSciNetCrossRef
11.
go back to reference Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004)MathSciNetCrossRef Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004)MathSciNetCrossRef
12.
go back to reference Duncan, C.A., Kobourov, S.G., Anil Kumar, V.S.: Optimal constrained graph exploration. ACM Trans. Algorithms 2, 380–402 (2006)MathSciNetCrossRef Duncan, C.A., Kobourov, S.G., Anil Kumar, V.S.: Optimal constrained graph exploration. ACM Trans. Algorithms 2, 380–402 (2006)MathSciNetCrossRef
13.
14.
go back to reference Fraigniaud, P., Ilcinkas, D.: Directed graphs exploration with little memory. In: Proceedings of 21st Symposium on Theoretical Aspects of Computer Science (STACS 2004), pp. 246–257 (2004) Fraigniaud, P., Ilcinkas, D.: Directed graphs exploration with little memory. In: Proceedings of 21st Symposium on Theoretical Aspects of Computer Science (STACS 2004), pp. 246–257 (2004)
15.
go back to reference Gorain, B., Pelc, A.: Deterministic graph exploration with advice. In: Proceedings of 44th International Colloquium on Automata, Languages and Programming (ICALP 2017), pp. 132:1–132:14 (2017) Gorain, B., Pelc, A.: Deterministic graph exploration with advice. In: Proceedings of 44th International Colloquium on Automata, Languages and Programming (ICALP 2017), pp. 132:1–132:14 (2017)
17.
go back to reference Pelc, A., Tiane, A.: Efficient grid exploration with a stationary token. Int. J. Found. Comput. Sci. 25, 247–262 (2014)MathSciNetCrossRef Pelc, A., Tiane, A.: Efficient grid exploration with a stationary token. Int. J. Found. Comput. Sci. 25, 247–262 (2014)MathSciNetCrossRef
18.
go back to reference Rao, N.S.V., Kareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown terrains: introductory survey of non-heuristic algorithms, Technical report ORNL/TM-12410, Oak Ridge National Laboratory, July 1993 Rao, N.S.V., Kareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown terrains: introductory survey of non-heuristic algorithms, Technical report ORNL/TM-12410, Oak Ridge National Laboratory, July 1993
20.
go back to reference Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89 (1996)CrossRef Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I - characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89 (1996)CrossRef
Metadata
Title
Explorable Families of Graphs
Author
Andrzej Pelc
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-01325-7_17

Premium Partner