Skip to main content
Top
Published in: Health and Technology 1/2017

13-12-2016 | Original Paper

Exploratory analysis of local gene groups in breast cancer guided by biological networks

Authors: Stelios Sfakianakis, Ekaterini S. Bei, Michalis Zervakis

Published in: Health and Technology | Issue 1/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The path to personalized medicine requires the stratification of patients based on their genetic, molecular, and other characteristics to achieve the individualized treatment of complex diseases such as the breast cancer. The identification of single “biomarkers” as the driving forces for the appearance of cancer has therefore been widely pursued in the last fifteen years but with no robust results across different studies. The use of existing biological knowledge such as the gene interaction networks and regulatory pathways can be of great help, since it has been argued that cancer is caused by the deregulation of multiple biological processes in the cell. In this study we explore the usage of such biological knowledge for the tuning and adaptation of the breast cancer classification tasks both in a supervised (classifying unknown samples according to a predetermined taxonomy) and unsupervised setting (clustering of new data towards identifying new categories). The proposed methodology starts from an initial list of “seed” genes and proceeds to the expansion of their “neighborhoods” according to the topology of a given biological network. The expansion process operates in a supervised manner for the construction of the first level in a two level classification scheme. The first level base classifiers are built using the network structure and a “random walk” search strategy for the selection of the genes used in these classifiers. At the second level, a meta-classifier is trained to combine in the best possible way the results of the base classifiers. The proposed approach therefore aims to strengthen the predictive ability of the initial list of genes and provide more robust generalization guarantees. Proceeding to the unsupervised setting, the extracted gene neighborhoods around the initial “seeds” are considered as modules of highly interacting genes within the same group but of strong independence across groups. This consideration allows the introduction of a sparse Gaussian mixture model for the assignment of breast cancer samples into a set of unknown clusters. Our methodology is explained in full detail and promising results in Breast Cancer related scenarios are obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12(1):56–68.CrossRef Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12(1):56–68.CrossRef
2.
go back to reference Bidard FC, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. The Lancet Oncology. 2014;15(4):406–414.CrossRef Bidard FC, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, Grisanti S, Generali D, Garcia-Saenz JA, Stebbing J, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. The Lancet Oncology. 2014;15(4):406–414.CrossRef
3.
go back to reference Biernacki C, Celeux G, Govaert G. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Computational Statistics & Data Analysis. 2003;41(3-4):561–575.MathSciNetCrossRefMATH Biernacki C, Celeux G, Govaert G. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Computational Statistics & Data Analysis. 2003;41(3-4):561–575.MathSciNetCrossRefMATH
4.
go back to reference Bishop C. Pattern recognition and machine learning. New York: Springer; 2006. Bishop C. Pattern recognition and machine learning. New York: Springer; 2006.
5.
go back to reference Breiman L. Bagging predictors. Mach Learn. 1996. Breiman L. Bagging predictors. Mach Learn. 1996.
7.
go back to reference Burnham KP, Anderson DR. Multimodel inference understanding aic and bic in model selection. Sociol Methods Res. 2004;33(2):261–304.MathSciNetCrossRef Burnham KP, Anderson DR. Multimodel inference understanding aic and bic in model selection. Sociol Methods Res. 2004;33(2):261–304.MathSciNetCrossRef
8.
go back to reference Can T, Çamolu O, Singh AK. Analysis of protein-protein interaction networks using random walks. Proceedings of the 5th international workshop on bioinformatics. ACM; 2005. p. 61–68. Can T, Çamolu O, Singh AK. Analysis of protein-protein interaction networks using random walks. Proceedings of the 5th international workshop on bioinformatics. ACM; 2005. p. 61–68.
9.
go back to reference Cho DY, Kim YA, Przytycka TM. Network biology approach to complex diseases. PLoS Comput Biol. 2012;8(12):e1002,820.CrossRef Cho DY, Kim YA, Przytycka TM. Network biology approach to complex diseases. PLoS Comput Biol. 2012;8(12):e1002,820.CrossRef
10.
go back to reference Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007:3. Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007:3.
11.
go back to reference Chung F. 2007. The heat kernel as the pagerank of a graph, Vol. 104. Chung F. 2007. The heat kernel as the pagerank of a graph, Vol. 104.
12.
go back to reference Cristofanilli M, Broglio KR, Guarneri V, Jackson S, Fritsche HA, Islam R, Dawood S, Reuben JM, Kau SW, Lara JM, et al. Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden. Clinical breast cancer. 2007;7(6):34–42.CrossRef Cristofanilli M, Broglio KR, Guarneri V, Jackson S, Fritsche HA, Islam R, Dawood S, Reuben JM, Kau SW, Lara JM, et al. Circulating tumor cells in metastatic breast cancer: biologic staging beyond tumor burden. Clinical breast cancer. 2007;7(6):34–42.CrossRef
13.
go back to reference Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–791.CrossRef Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–791.CrossRef
14.
go back to reference Das J, Yu H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol. 2012. Das J, Yu H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst Biol. 2012.
15.
go back to reference Datta S, Datta S. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC bioinformatics. 2006;7(1):397.CrossRef Datta S, Datta S. Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes. BMC bioinformatics. 2006;7(1):397.CrossRef
16.
go back to reference Dietterich TG. 2000. Ensemble Methods in Machine Learning. Dietterich TG. 2000. Ensemble Methods in Machine Learning.
18.
go back to reference Franken B, de Groot MR, Mastboom WJ, Vermes I, van der Palen J, Tibbe AG, Terstappen LW. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 2012;14(5):1.CrossRef Franken B, de Groot MR, Mastboom WJ, Vermes I, van der Palen J, Tibbe AG, Terstappen LW. Circulating tumor cells, disease recurrence and survival in newly diagnosed breast cancer. Breast Cancer Res. 2012;14(5):1.CrossRef
19.
go back to reference Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci .1997;55(1):119–139.MathSciNetCrossRefMATH Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci .1997;55(1):119–139.MathSciNetCrossRefMATH
20.
go back to reference Giuliano M, Giordano A, Jackson S, De Giorgi U, Mego M, Cohen EN, Gao H, Anfossi S, Handy BC, Ueno NT, et al. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res. 2014;16(5):1.CrossRef Giuliano M, Giordano A, Jackson S, De Giorgi U, Mego M, Cohen EN, Gao H, Anfossi S, Handy BC, Ueno NT, et al. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res. 2014;16(5):1.CrossRef
21.
go back to reference Gradilone A, Naso G, Raimondi C, Cortesi E, Gandini O, Vincenzi B, Saltarelli R, Chiapparino E, Spremberg F, Cristofanilli M, et al. Circulating tumor cells (ctcs) in metastatic breast cancer (mbc): prognosis, drug resistance and phenotypic characterization. Ann Oncol. 2011;22(1):86–92.CrossRef Gradilone A, Naso G, Raimondi C, Cortesi E, Gandini O, Vincenzi B, Saltarelli R, Chiapparino E, Spremberg F, Cristofanilli M, et al. Circulating tumor cells (ctcs) in metastatic breast cancer (mbc): prognosis, drug resistance and phenotypic characterization. Ann Oncol. 2011;22(1):86–92.CrossRef
22.
go back to reference Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods. 2013;10(11):1108–1115.CrossRef Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods. 2013;10(11):1108–1115.CrossRef
23.
go back to reference Huang E, Cheng S, Dressman H, Pittman J, Tsou M, Horng C, Bild A, Iversen E, Liao M, Chen C, et al. Gene expression predictors of breast cancer outcomes. The Lancet. 2003;361(9369): 1590–1596.CrossRef Huang E, Cheng S, Dressman H, Pittman J, Tsou M, Horng C, Bild A, Iversen E, Liao M, Chen C, et al. Gene expression predictors of breast cancer outcomes. The Lancet. 2003;361(9369): 1590–1596.CrossRef
24.
go back to reference Janni WJ, Rack B, Terstappen LW, Pierga JY, Taran FA, Fehm T, Hall C, de Groot MR, Bidard FC, Friedl TW, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res. 2016;22(10):2583–2593.CrossRef Janni WJ, Rack B, Terstappen LW, Pierga JY, Taran FA, Fehm T, Hall C, de Groot MR, Bidard FC, Friedl TW, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res. 2016;22(10):2583–2593.CrossRef
25.
go back to reference Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO molecular medicine. 2015;7(1):1–11.CrossRef Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO molecular medicine. 2015;7(1):1–11.CrossRef
26.
go back to reference Kim TH, Lee KM, Lee SU. Generative image segmentation using random walks with restart. European conference on computer vision. Springer; 2008. p. 264–275. Kim TH, Lee KM, Lee SU. Generative image segmentation using random walks with restart. European conference on computer vision. Springer; 2008. p. 264–275.
27.
go back to reference Kittler J, Hatef M, Duin RPW, Matas J. On Combining Classifiers. IEEE Trans Pattern Anal Mach Intell (). 1998;20(3):226–239.CrossRef Kittler J, Hatef M, Duin RPW, Matas J. On Combining Classifiers. IEEE Trans Pattern Anal Mach Intell (). 1998;20(3):226–239.CrossRef
28.
go back to reference Kohavi R, John GH. Wrappersfor feature subset selection Artificial intelligence. 1997. Kohavi R, John GH. Wrappersfor feature subset selection Artificial intelligence. 1997.
29.
go back to reference Lang JE, Scott JH, Wolf DM, Novak P, Punj V, Magbanua MJM, Zhu W, Mineyev N, Haqq CM, Crothers JR, Esserman LJ, Tripathy D, van t Veer L, Park JW. Expression profiling of circulating tumor cells in metastatic breast cancer. Breast Cancer Res Treat. 2015;149(1):121–131.CrossRef Lang JE, Scott JH, Wolf DM, Novak P, Punj V, Magbanua MJM, Zhu W, Mineyev N, Haqq CM, Crothers JR, Esserman LJ, Tripathy D, van t Veer L, Park JW. Expression profiling of circulating tumor cells in metastatic breast cancer. Breast Cancer Res Treat. 2015;149(1):121–131.CrossRef
30.
go back to reference Leiserson MDM, Vandin F, Wu H, Dobson JR, Eldridge JV, Thomas JL, Papoutsaki A, Kim Y, Niu B, McLellan M, Lawrence MS, Gonzalez-Perez A, Tamborero D, Cheng Y, Ryslik GA, Lopez-Bigas N, Getz G, Ding L, Raphael B J. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2014:1–11. Leiserson MDM, Vandin F, Wu H, Dobson JR, Eldridge JV, Thomas JL, Papoutsaki A, Kim Y, Niu B, McLellan M, Lawrence MS, Gonzalez-Perez A, Tamborero D, Cheng Y, Ryslik GA, Lopez-Bigas N, Getz G, Ding L, Raphael B J. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2014:1–11.
31.
go back to reference Lovasz L. Random walks on graphs: A survey Combinatorics. 1993. Lovasz L. Random walks on graphs: A survey Combinatorics. 1993.
32.
go back to reference Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, Bedrosian I, Kuerer HM, Krishnamurthy S. Circulating tumour cells in non-metastatic breast cancer: a prospective study. The lancet oncology. 2012;13(7):688–695.CrossRef Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, Bedrosian I, Kuerer HM, Krishnamurthy S. Circulating tumour cells in non-metastatic breast cancer: a prospective study. The lancet oncology. 2012;13(7):688–695.CrossRef
33.
go back to reference Maltoni R, Fici P, Amadori D, Gallerani G, Cocchi C, Zoli M, Rocca A, Cecconetto L, Folli S, Scarpi E, et al. Circulating tumor cells in early breast cancer: a connection with vascular invasion. Cancer lett. 2015;367(1):43–48.CrossRef Maltoni R, Fici P, Amadori D, Gallerani G, Cocchi C, Zoli M, Rocca A, Cecconetto L, Folli S, Scarpi E, et al. Circulating tumor cells in early breast cancer: a connection with vascular invasion. Cancer lett. 2015;367(1):43–48.CrossRef
34.
go back to reference McInnes LM, Jacobson N, Redfern A, Dowling A, Thompson EW, Saunders CM. Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial–mesenchymal plasticity. Cellular and Phenotypic Plasticity in Cancer 2015:18. McInnes LM, Jacobson N, Redfern A, Dowling A, Thompson EW, Saunders CM. Clinical implications of circulating tumor cells of breast cancer patients: role of epithelial–mesenchymal plasticity. Cellular and Phenotypic Plasticity in Cancer 2015:18.
35.
go back to reference McLachlan G, Peel D. Finite mixture models, Wiley-Interscience. 2000. McLachlan G, Peel D. Finite mixture models, Wiley-Interscience. 2000.
36.
go back to reference Meyn SP, Tweedie RL. Markov chains and stochastic stability: Springer Science & Business Media. 2012. Meyn SP, Tweedie RL. Markov chains and stochastic stability: Springer Science & Business Media. 2012.
37.
go back to reference Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Protein Networks and Pathway Analysis. 2009:123–140. Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Protein Networks and Pathway Analysis. 2009:123–140.
38.
go back to reference Mosca E, Alfieri R, Merelli I, Viti F, Calabria A, Milanesi L. A multilevel data integration resource for breast cancer study. BMC Syst Biol. 2010;4(1):76.CrossRef Mosca E, Alfieri R, Merelli I, Viti F, Calabria A, Milanesi L. A multilevel data integration resource for breast cancer study. BMC Syst Biol. 2010;4(1):76.CrossRef
39.
go back to reference Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, Danila MI, Feng G, Chisholm RL. Annotating the human genome with disease ontology. BMC genomics. 2009;10(Suppl 1):S6.CrossRef Osborne JD, Flatow J, Holko M, Lin SM, Kibbe WA, Zhu LJ, Danila MI, Feng G, Chisholm RL. Annotating the human genome with disease ontology. BMC genomics. 2009;10(Suppl 1):S6.CrossRef
40.
go back to reference Pan JY, Yang HJ, Faloutsos C, Duygulu P. Automatic multimedia cross-modal correlation discovery. Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2004. p. 653–658. Pan JY, Yang HJ, Faloutsos C, Duygulu P. Automatic multimedia cross-modal correlation discovery. Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining. ACM; 2004. p. 653–658.
41.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.MathSciNetMATH Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825–2830.MathSciNetMATH
42.
go back to reference Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI. 2015. Disgenet: a discovery platform for the dynamical exploration of human diseases and their genes, Database. 2015 bav028. Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI. 2015. Disgenet: a discovery platform for the dynamical exploration of human diseases and their genes, Database. 2015 bav028.
43.
go back to reference Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol. 2011;2(1):37–63.MathSciNet Powers DM. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol. 2011;2(1):37–63.MathSciNet
44.
go back to reference Rosenlicht M. Introduction to analysis. New York: Dover; 1986.MATH Rosenlicht M. Introduction to analysis. New York: Dover; 1986.MATH
45.
go back to reference Ruschhaupt M, Huber W, Poustka A, Mansmann U, et al. A compendium to ensure computational reproducibility in high-dimensional classification tasks. Stat Appl Genet Mol Biol. 2004;3(1):1078.MathSciNetCrossRefMATH Ruschhaupt M, Huber W, Poustka A, Mansmann U, et al. A compendium to ensure computational reproducibility in high-dimensional classification tasks. Stat Appl Genet Mol Biol. 2004;3(1):1078.MathSciNetCrossRefMATH
46.
go back to reference Salhia B, Kiefer J, Ross JTD, Metapally R, Martinez RA, Johnson KN, DiPerna DM, Paquette KM, Jung S, Nasser S, Wallstrom G, Tembe W, Baker A, Carpten J, Resau J, Ryken T, Sibenaller Z, Petricoin EF, Liotta LA, Ramanathan RK, Berens ME, Tran NL. Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PloS one. 2014;9(1):e85,448.CrossRef Salhia B, Kiefer J, Ross JTD, Metapally R, Martinez RA, Johnson KN, DiPerna DM, Paquette KM, Jung S, Nasser S, Wallstrom G, Tembe W, Baker A, Carpten J, Resau J, Ryken T, Sibenaller Z, Petricoin EF, Liotta LA, Ramanathan RK, Berens ME, Tran NL. Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PloS one. 2014;9(1):e85,448.CrossRef
47.
go back to reference Schapire RE. The strength of weak learnability. Mach Learn. 1990;5(2):197–227. Schapire RE. The strength of weak learnability. Mach Learn. 1990;5(2):197–227.
48.
go back to reference Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays. Nat Genet. 2005;37:S38–S45.CrossRef Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays. Nat Genet. 2005;37:S38–S45.CrossRef
49.
go back to reference Sfakianakis S, Bei ES, Zervakis M, Vassou D, Kafetzopoulos D. On the Identification of Circulating Tumor Cells in Breast Cancer. IEEE Journal of Biomedical and health informatics. 2014;18(3):773–782.CrossRef Sfakianakis S, Bei ES, Zervakis M, Vassou D, Kafetzopoulos D. On the Identification of Circulating Tumor Cells in Breast Cancer. IEEE Journal of Biomedical and health informatics. 2014;18(3):773–782.CrossRef
50.
go back to reference Sfakianakis S, Zervakis M, Tsiknakis M, Kafetzopoulos D. Integration of biological knowledge in the mixture-of-Gaussians analysis of genomic clustering: IEEE. 2010. Sfakianakis S, Zervakis M, Tsiknakis M, Kafetzopoulos D. Integration of biological knowledge in the mixture-of-Gaussians analysis of genomic clustering: IEEE. 2010.
51.
go back to reference Shi M, Beauchamp RD, Zhang B. A Network-Based gene expression signature informs prognosis and treatment for colorectal cancer patients. PloS one. 2012;7(7):e41,292.CrossRef Shi M, Beauchamp RD, Zhang B. A Network-Based gene expression signature informs prognosis and treatment for colorectal cancer patients. PloS one. 2012;7(7):e41,292.CrossRef
52.
go back to reference Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer. 2007;7(7):545–553.CrossRef Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer. 2007;7(7):545–553.CrossRef
53.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15,545–15,550.CrossRef Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15,545–15,550.CrossRef
54.
go back to reference Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating Genes and Protein Complexes with Disease via Network Propagation. PLoS Comput Biol. 2010;6(1):e1000,641.MathSciNetCrossRef Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating Genes and Protein Complexes with Disease via Network Propagation. PLoS Comput Biol. 2010;6(1):e1000,641.MathSciNetCrossRef
55.
go back to reference Vidal M, Cusick ME, Barabási AL. Interactome Networks and Human Disease. Cell. 2011;144(6): 986–998.CrossRef Vidal M, Cusick ME, Barabási AL. Interactome Networks and Human Disease. Cell. 2011;144(6): 986–998.CrossRef
56.
go back to reference Wang L Xiao Y, Ping Y, Li J, Zhao H, Li F, Hu J, Zhang H, Deng Y, Tian J, Li X. Integrating Multi-Omics for uncovering the architecture of Cross-Talking pathways in breast cancer. PloS one. 2014;9(8):e104,282.CrossRef Wang L Xiao Y, Ping Y, Li J, Zhao H, Li F, Hu J, Zhang H, Deng Y, Tian J, Li X. Integrating Multi-Omics for uncovering the architecture of Cross-Talking pathways in breast cancer. PloS one. 2014;9(8):e104,282.CrossRef
57.
Metadata
Title
Exploratory analysis of local gene groups in breast cancer guided by biological networks
Authors
Stelios Sfakianakis
Ekaterini S. Bei
Michalis Zervakis
Publication date
13-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Health and Technology / Issue 1/2017
Print ISSN: 2190-7188
Electronic ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-016-0155-1

Other articles of this Issue 1/2017

Health and Technology 1/2017 Go to the issue

Premium Partner