Skip to main content
Top
Published in: Optical and Quantum Electronics 4/2024

01-04-2024

Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma

Authors: Vivek Sharma, Niti Kant, Vishal Thakur

Published in: Optical and Quantum Electronics | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Laser Wakefield Acceleration (LWFA) has emerged as a groundbreaking approach for generating ultra-high energy electron beams over short distances, revolutionizing the field of particle acceleration. In this paper, we investigate the novel concept of employing sin-Gaussian laser pulse for enhanced LWFA performance. sin-Gaussian pulses combine the advantageous features of both sinusoidal and Gaussian pulse shapes, offering unique opportunities for generating the plasma wakefield and optimizing electron acceleration. We present a comprehensive theoretical analysis of the interaction between a sin-Gaussian laser pulse and an underdense plasma medium, elucidating the intricate dynamics of the wakefield excitation and electron acceleration. Through analytical study, we demonstrate that the sin-Gaussian pulse configuration leads to a significant energy gain (Maximum gain of 2.06 GeV with chosen parameters) for plasma electrons. Furthermore, we explore the effects of varying key parameters such as the laser electric field amplitude and beam waist on the acceleration performance. Our findings reveal the underlying physics governing the interplay between these parameters and the resulting electron energy spectra for LWFA outcomes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abedi-Varaki, M.: Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32(20), 1850225 (2018)ADSMathSciNetCrossRef Abedi-Varaki, M.: Electron acceleration by a circularly polarized electromagnetic wave publishing in plasma with a periodic magnetic field and an axial guide magnetic field. Mod. Phys. Lett. B 32(20), 1850225 (2018)ADSMathSciNetCrossRef
go back to reference Abedi-Varaki, M., Daraei, M.E.: Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)CrossRef Abedi-Varaki, M., Daraei, M.E.: Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel-Gaussian laser pulses propagating in collisionless plasma. J. Plasma Phys. 89(1), 905890114 (2023)CrossRef
go back to reference Afhami, S., Eslami, E.: Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation. AIP Adv. 4(8) (2014) Afhami, S., Eslami, E.: Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation. AIP Adv. 4(8) (2014)
go back to reference Albert, F., Thomas, A.G.R.: Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control Fusion 58(10), 103001 (2016)ADSCrossRef Albert, F., Thomas, A.G.R.: Applications of laser wakefield accelerator-based light sources. Plasma Phys. Control Fusion 58(10), 103001 (2016)ADSCrossRef
go back to reference Albert, F., et al.: Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys. Control Fusion 56(8), 084015 (2014)ADSCrossRef Albert, F., et al.: Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Phys. Control Fusion 56(8), 084015 (2014)ADSCrossRef
go back to reference Askari, H.R., Shahidani, A.: Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser-plasma interactions. Opt. Laser Technol. 45(1), 613–619 (2013a)ADSCrossRef Askari, H.R., Shahidani, A.: Influence of properties of the Gaussian laser pulse and magnetic field on the electron acceleration in laser-plasma interactions. Opt. Laser Technol. 45(1), 613–619 (2013a)ADSCrossRef
go back to reference Askari, H.R., Shahidani, A.: Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Optik Int. J. Light Electron Opt. 124(17), 3154–3161 (2013b)CrossRef Askari, H.R., Shahidani, A.: Effect of magnetic field on production of wake field in laser–plasma interactions: Gaussian-like (GL) and rectangular–triangular (RT) pulses. Optik Int. J. Light Electron Opt. 124(17), 3154–3161 (2013b)CrossRef
go back to reference Döpp, A., Guillaume, E., Thaury, C., Lifschitz, A., Ta Phuoc, K., Malka, V.: Energy boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23(5) (2016) Döpp, A., Guillaume, E., Thaury, C., Lifschitz, A., Ta Phuoc, K., Malka, V.: Energy boost in laser wakefield accelerators using sharp density transitions. Phys. Plasmas 23(5) (2016)
go back to reference Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009)ADSCrossRef Esarey, E., Schroeder, C.B., Leemans, W.P.: Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009)ADSCrossRef
go back to reference Fallah, R., Khorashadizadeh, S.M.: Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses. Contrib. Plasma Phys. 58(9), 878–889 (2018a)ADSCrossRef Fallah, R., Khorashadizadeh, S.M.: Electron acceleration in a homogeneous plasma by Bessel-Gaussian and Gaussian pulses. Contrib. Plasma Phys. 58(9), 878–889 (2018a)ADSCrossRef
go back to reference Fallah, R., Khorashadizadeh, S.M.: Influence of Gaussian, super-gaussian, and cosine-gaussian pulse properties on the electron acceleration in a homogeneous plasma. IEEE Trans. Plasma Sci. 46(6), 2085–2090 (2018b)ADSCrossRef Fallah, R., Khorashadizadeh, S.M.: Influence of Gaussian, super-gaussian, and cosine-gaussian pulse properties on the electron acceleration in a homogeneous plasma. IEEE Trans. Plasma Sci. 46(6), 2085–2090 (2018b)ADSCrossRef
go back to reference Fallah, R., Khorashadizadeh, S.M.: Electron acceleration by Bessel-Gaussian laser pulse in a plasma in the presence of an external magnetic field. High Energy Density Phys. 31, 5–12 (2019)ADSCrossRef Fallah, R., Khorashadizadeh, S.M.: Electron acceleration by Bessel-Gaussian laser pulse in a plasma in the presence of an external magnetic field. High Energy Density Phys. 31, 5–12 (2019)ADSCrossRef
go back to reference Fedyuk, V., et al.: Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat. Biotechnol. 41(2), 212–221 (2023)CrossRefPubMed Fedyuk, V., et al.: Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat. Biotechnol. 41(2), 212–221 (2023)CrossRefPubMed
go back to reference Gopal, K., Gupta, D.N., Suk, H.: Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49(3), 1152–1158 (2021)ADSCrossRef Gopal, K., Gupta, D.N., Suk, H.: Pulse-length effect on laser wakefield acceleration of electrons by skewed laser pulses. IEEE Trans. Plasma Sci. 49(3), 1152–1158 (2021)ADSCrossRef
go back to reference Gopal, K., Gupta, D.N.: Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses. Phys. Plasmas 24(10) (2017). Gopal, K., Gupta, D.N.: Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses. Phys. Plasmas 24(10) (2017).
go back to reference Gupta, D.N., Jain, A.: Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma. Optik (stuttg) 227, 165824 (2021)ADSCrossRef Gupta, D.N., Jain, A.: Terahertz radiation generation by a super-Gaussian laser pulse in a magnetized plasma. Optik (stuttg) 227, 165824 (2021)ADSCrossRef
go back to reference Gupta, D.N., Gopal, K., Nam, I.H., Kulagin, V.V., Suk, H.: Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(3), 449–454 (2014)ADSCrossRef Gupta, D.N., Gopal, K., Nam, I.H., Kulagin, V.V., Suk, H.: Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32(3), 449–454 (2014)ADSCrossRef
go back to reference Gupta, D.N., Yadav, M., Jain, A., Kumar, S.: Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse. Phys. Lett. Sect. A General Atom. Solid State Phys. 414 (2021) Gupta, D.N., Yadav, M., Jain, A., Kumar, S.: Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse. Phys. Lett. Sect. A General Atom. Solid State Phys. 414 (2021)
go back to reference Hummer, D.G.: Expansion of Dawson’s function in a series of Chebyshev polynomials. Math. Comput. 18(86), 317–319 (1964)MathSciNet Hummer, D.G.: Expansion of Dawson’s function in a series of Chebyshev polynomials. Math. Comput. 18(86), 317–319 (1964)MathSciNet
go back to reference Jha, P., Saroch, A., Kumar Verma, N.: Wakefield generation via two color laser pulses. Phys. Plasmas 20(5) (2013) Jha, P., Saroch, A., Kumar Verma, N.: Wakefield generation via two color laser pulses. Phys. Plasmas 20(5) (2013)
go back to reference Kim, H.T., et al.: Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by Petawatt laser pulses. Phys. Rev. Lett. 111(16), 165002 (2013)ADSCrossRefPubMed Kim, H.T., et al.: Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by Petawatt laser pulses. Phys. Rev. Lett. 111(16), 165002 (2013)ADSCrossRefPubMed
go back to reference Leemans, W.P., et al.: Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89(17), 174802 (2002)ADSCrossRefPubMed Leemans, W.P., et al.: Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89(17), 174802 (2002)ADSCrossRefPubMed
go back to reference Midha, H. K., Sharma, V., Kant, N., Thakur, V.: Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023) Midha, H. K., Sharma, V., Kant, N., Thakur, V.: Efficient THz generation by Hermite-cosh-Gaussian lasers in plasma with slanting density modulation. J. Opt. (2023)
go back to reference Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.: Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)MathSciNetCrossRef Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T.: Geometric properties of normalized imaginary error function. Studia Universitatis Babes-Bolyai Matematica 67(2), 455–462 (2022)MathSciNetCrossRef
go back to reference Ostermayr, T., et al.: Laser plasma accelerator driven by a super-Gaussian pulse. J. Plasma Phys. 78(4), 447–453 (2012)ADSCrossRef Ostermayr, T., et al.: Laser plasma accelerator driven by a super-Gaussian pulse. J. Plasma Phys. 78(4), 447–453 (2012)ADSCrossRef
go back to reference Pathak, V.B., Kim, H.T., Vieira, J., Silva, L.O., Nam, C.H.: All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Sci. Rep. 8(1), 11772 (2018)ADSCrossRefPubMedPubMedCentral Pathak, V.B., Kim, H.T., Vieira, J., Silva, L.O., Nam, C.H.: All optical dual stage laser wakefield acceleration driven by two-color laser pulses. Sci. Rep. 8(1), 11772 (2018)ADSCrossRefPubMedPubMedCentral
go back to reference Sharma, V., Kumar, S.: To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)CrossRef Sharma, V., Kumar, S.: To study the effect of laser frequency-chirp on trapped electrons in laser wakefield acceleration. J. Phys. Conf. Ser. 2267(1), 012097 (2022)CrossRef
go back to reference Sharma, V., Thakur, V., Kant, N.: Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt Quantum Electron 52(10), 444 (2020)CrossRef Sharma, V., Thakur, V., Kant, N.: Second harmonic generation of cosh-Gaussian laser beam in magnetized plasma. Opt Quantum Electron 52(10), 444 (2020)CrossRef
go back to reference Sharma, V., Kumar, S., Kant, N., Thakur, V.: Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron. 55(13), 1150 (2023a)CrossRef Sharma, V., Kumar, S., Kant, N., Thakur, V.: Enhanced laser wakefield acceleration by a circularly polarized laser pulse in obliquely magnetized under-dense plasma. Opt. Quantum Electron. 55(13), 1150 (2023a)CrossRef
go back to reference Sharma, V., Kumar, S., Kant, N., Thakur, V.: Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023d)ADSCrossRef Sharma, V., Kumar, S., Kant, N., Thakur, V.: Effect of frequency chirp and pulse length on laser wakefield excitation in under-dense plasma. Braz. J. Phys. 53(6), 157 (2023d)ADSCrossRef
go back to reference Sharma, V., Kumar, S., Kant, N., Thakur, V.: Excitation of the laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023) Sharma, V., Kumar, S., Kant, N., Thakur, V.: Excitation of the laser wakefield by asymmetric chirped laser pulse in under dense plasma. J. Opt. (2023)
go back to reference Sharma, V., Kumar, S., Kant, N., Thakur, V.: Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023). Sharma, V., Kumar, S., Kant, N., Thakur, V.: Enhanced laser wakefield by beating of two co-propagating Gaussian laser pulses. J. Opt. (2023).
go back to reference Singh, K.P.: Electron acceleration by a circularly polarized laser pulse in a plasma. Phys. Plasmas 11(8), 3992–3996 (2004)ADSCrossRef Singh, K.P.: Electron acceleration by a circularly polarized laser pulse in a plasma. Phys. Plasmas 11(8), 3992–3996 (2004)ADSCrossRef
go back to reference Tajima, T., Dawson, J. M.: Laser Electron Accelerator 43(4) (1979) Tajima, T., Dawson, J. M.: Laser Electron Accelerator 43(4) (1979)
go back to reference Thakur, V., Kant, N.: Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front Phys (beijing) 11(4), 115202 (2016)ADSCrossRef Thakur, V., Kant, N.: Effect of pulse slippage on density transition-based resonant third-harmonic generation of short-pulse laser in plasma. Front Phys (beijing) 11(4), 115202 (2016)ADSCrossRef
go back to reference Thakur, V., Kant, N.: Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (stuttg) 142, 455–462 (2017)ADSCrossRef Thakur, V., Kant, N.: Optimization of wiggler wave number for density transition based second harmonic generation in laser plasma interaction. Optik (stuttg) 142, 455–462 (2017)ADSCrossRef
go back to reference Thakur, V., Kant, N.: Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (stuttg) 168, 159–164 (2018)ADSCrossRef Thakur, V., Kant, N.: Resonant second harmonic generation in plasma under exponential density ramp profile. Optik (stuttg) 168, 159–164 (2018)ADSCrossRef
go back to reference Thakur, V., Kant, N.: Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)ADSCrossRef Thakur, V., Kant, N.: Combined effect of chirp and exponential density ramp on relativistic self-focusing of Hermite-Cosine-Gaussian laser in collisionless cold quantum plasma. Braz. J. Phys. 49(1), 113–118 (2019)ADSCrossRef
go back to reference Thakur, V., Vij, S., Sharma, V., Kant, N.: Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (stuttg) 171, 523–528 (2018)ADSCrossRef Thakur, V., Vij, S., Sharma, V., Kant, N.: Influence of exponential density ramp on second harmonic generation by a short pulse laser in magnetized plasma. Optik (stuttg) 171, 523–528 (2018)ADSCrossRef
go back to reference Wilson, T.C., Sheng, Z.-M., McKenna, P., Hidding, B.: Self-focusing, compression and collapse of ultrashort weakly-relativistic Laguerre-Gaussian lasers in near-critical plasma. J Phys Commun 7(3), 035002 (2023)CrossRef Wilson, T.C., Sheng, Z.-M., McKenna, P., Hidding, B.: Self-focusing, compression and collapse of ultrashort weakly-relativistic Laguerre-Gaussian lasers in near-critical plasma. J Phys Commun 7(3), 035002 (2023)CrossRef
go back to reference Zeng, M., et al.: Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers. Phys. Rev. Lett. 114(8), 084801 (2015)ADSCrossRefPubMed Zeng, M., et al.: Multichromatic narrow-energy-spread electron bunches from laser-wakefield acceleration with dual-color lasers. Phys. Rev. Lett. 114(8), 084801 (2015)ADSCrossRefPubMed
go back to reference Zhang, X. et al.: Effect of pulse profile and chirp on a laser wakefield generation. Phys. Plasmas 19(5) (2012) Zhang, X. et al.: Effect of pulse profile and chirp on a laser wakefield generation. Phys. Plasmas 19(5) (2012)
go back to reference Zhu, K., Zhu, J., Su, Q., Tang, H.: Propagation property of an astigmatic sin–Gaussian beam in a strongly nonlocal nonlinear media. Appl. Sci. 9(1), 71 (2018)CrossRef Zhu, K., Zhu, J., Su, Q., Tang, H.: Propagation property of an astigmatic sin–Gaussian beam in a strongly nonlocal nonlinear media. Appl. Sci. 9(1), 71 (2018)CrossRef
Metadata
Title
Exploring sin-Gaussian laser pulses for efficient electron acceleration in plasma
Authors
Vivek Sharma
Niti Kant
Vishal Thakur
Publication date
01-04-2024
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 4/2024
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-06262-x

Other articles of this Issue 4/2024

Optical and Quantum Electronics 4/2024 Go to the issue