Skip to main content
Top
Published in: Fire Technology 6/2023

13-09-2023

Extension of the Explosion Vent Analyzer (EVA): A Computational Model Predicting Explosion Parameters of Fuel Blends

Authors: Samuel Ogunfuye, Hayri Sezer, Vyacheslav Akkerman

Published in: Fire Technology | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Accidental explosions of flammable gases are risky for lives and properties, especially if such an explosion occurs within a confined space, because internal pressure builds up within the enclosure. Having a deep understanding of these explosions and their consequences will enhance developing mitigation strategies to prevent future explosions and reduce the impact of their consequences. Explosion venting is a conventional method to mitigate the consequences of explosions in enclosures, with the computational explosion vent analyzer (EVA) being a tool used for predicting both the peak and transient pressures generated from accidental gaseous explosions. While the EVA has been employed to gaseous one-compound fuels so far, exploding multi-compound fuel mixtures are usually dealt with in practice. Hence, there has been a critical need to extend the capabilities of the EVA to account for fuel-blend explosions. This is performed in the present work, incorporating the Cantera software into the EVA platform to compute the laminar flame speeds for various fuel blends. As a result, a model predicting both the peak and transient pressures in an explosion of gaseous fuel blends is developed. Such a modification of the EVA entailed simulating explosions of hydrogen and hydrocarbons as well as hydrocarbon fuel blends of various compositions in vented and closed enclosures, along with its validation through experimental measurements. The study further investigated the effect of various parameters on the predicted transient and peak pressures, and the simulation results can be used in the design of safety vents for confined spaces. For explosion of a hydrogen-methane-air mixture, the model works better when the fuel mixture has higher vol% of hydrogen and predicts the peak pressure more accurately at larger vent areas.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
16.
28.
go back to reference Kodakoglu F (2020) Experimental, computational and analytical studies towards a predictive scenario for a burning accident. West Virginia University Libraries Kodakoglu F (2020) Experimental, computational and analytical studies towards a predictive scenario for a burning accident. West Virginia University Libraries
33.
go back to reference David GG, Raymond SL, Harry MK, Bryan WW (2021) An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. cantera.org David GG, Raymond SL, Harry MK, Bryan WW (2021) An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. cantera.org
34.
go back to reference Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow: theory & practice. Wiley, New YorkCrossRef Kee RJ, Coltrin ME, Glarborg P (2003) Chemically reacting flow: theory & practice. Wiley, New YorkCrossRef
38.
go back to reference Johnsplass J, Henriksen M, Vaagsaether K, Lundberg J, Bjerketvedt D (2017) Simulation of burning velocities in gases vented from thermal run-a-way lithium ion batteries. In: Proceedings of the 58th Conference Simulation Modeling (SIMS 58) Reykjavik, Iceland, Sep 25th–27th, 2017, vol 138, pp 157–161, Sep 2017. doi: https://doi.org/10.3384/ECP17138157. Johnsplass J, Henriksen M, Vaagsaether K, Lundberg J, Bjerketvedt D (2017) Simulation of burning velocities in gases vented from thermal run-a-way lithium ion batteries. In: Proceedings of the 58th Conference Simulation Modeling (SIMS 58) Reykjavik, Iceland, Sep 25th–27th, 2017, vol 138, pp 157–161, Sep 2017. doi: https://​doi.​org/​10.​3384/​ECP17138157.
40.
go back to reference Konnov AA The temperature and pressure dependences of the laminar burning velocity: experiments and modelling Konnov AA The temperature and pressure dependences of the laminar burning velocity: experiments and modelling
Metadata
Title
Extension of the Explosion Vent Analyzer (EVA): A Computational Model Predicting Explosion Parameters of Fuel Blends
Authors
Samuel Ogunfuye
Hayri Sezer
Vyacheslav Akkerman
Publication date
13-09-2023
Publisher
Springer US
Published in
Fire Technology / Issue 6/2023
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-023-01478-5

Other articles of this Issue 6/2023

Fire Technology 6/2023 Go to the issue