Skip to main content
Top
Published in: Wireless Personal Communications 3/2023

21-03-2023

Extreme Learning Machine Based Identification of Malicious Users for Secure Cooperative Spectrum Sensing in Cognitive Radio Networks

Authors: Manish Kumar Giri, Saikat Majumder

Published in: Wireless Personal Communications | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cognitive radio (CR) technology has evolved over the traditional radio to successfully utilize the unused frequency spectrum. In CR the secondary users (SUs) perform cooperative spectrum sensing to access the available frequency band. The opportunistic nature of sensing prevents any interference with primary users (PUs) in the network. However, the presence of security threats like malicious users (MUs) strongly influences the performance. In CR network, MUs act like normal SUs and transmit false information to the fusion center and degrades the performance. To overcome this issue, we proposed an extreme learning machine (ELM) based approach to classify the legitimate SUs with the MUs. In this work, ELM is used as a classifier to separate the legitimate SUs and MUs. Extensive simulation results are presented to highlight the effectiveness of the proposed approach. The proposed approach highlights significant improvement in terms of training time and provides better trade-off compare to the other competitive techniques in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Federal Communications Commission. (2003). Notice of proposed rule making and order. ET Docket No. 03-222 Federal Communications Commission. (2003). Notice of proposed rule making and order. ET Docket No. 03-222
2.
go back to reference Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRef
3.
go back to reference Zhai, L., Wang, H., & Gao, C. (2016). A spectrum access based on quality of service (QoS) in cognitive radio networks. PloS one, 11(5), e0155074.CrossRef Zhai, L., Wang, H., & Gao, C. (2016). A spectrum access based on quality of service (QoS) in cognitive radio networks. PloS one, 11(5), e0155074.CrossRef
4.
go back to reference Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.CrossRef Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–130.CrossRef
5.
go back to reference Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio: State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116.CrossRef
6.
go back to reference Khan, M. S., Jibran, M., Koo, I., Kim, S. M., & Kim, J. (2019). A double adaptive approach to tackle malicious users in cognitive radio networks. Wireless Communications and Mobile Computing, 2019, 2350694.CrossRef Khan, M. S., Jibran, M., Koo, I., Kim, S. M., & Kim, J. (2019). A double adaptive approach to tackle malicious users in cognitive radio networks. Wireless Communications and Mobile Computing, 2019, 2350694.CrossRef
7.
go back to reference Mishra, S. M., Sahai, A., & Brodersen, R. W. (2006). Cooperative sensing among cognitive radios. In 2006 IEEE international conference on communications (vol. 4, pp. 1658–1663). IEEE. Mishra, S. M., Sahai, A., & Brodersen, R. W. (2006). Cooperative sensing among cognitive radios. In 2006 IEEE international conference on communications (vol. 4, pp. 1658–1663). IEEE.
8.
go back to reference He, Y., Xue, J., Ratnarajah, T., Sellathurai, M., & Khan, F. (2016). On the performance of cooperative spectrum sensing in random cognitive radio networks. IEEE Systems Journal, 12(1), 881–892.CrossRef He, Y., Xue, J., Ratnarajah, T., Sellathurai, M., & Khan, F. (2016). On the performance of cooperative spectrum sensing in random cognitive radio networks. IEEE Systems Journal, 12(1), 881–892.CrossRef
9.
go back to reference Chilakala, S., & Ram, M. S. S. (2018). Optimization of cooperative secondary users in cognitive radio networks. Engineering Science and Technology, An International Journal, 21(5), 815–821.CrossRef Chilakala, S., & Ram, M. S. S. (2018). Optimization of cooperative secondary users in cognitive radio networks. Engineering Science and Technology, An International Journal, 21(5), 815–821.CrossRef
10.
go back to reference Jenani, M. (2017). Network security, a challenge. International Journal of Advanced Networking and Applications, 8(5), 120–123. Jenani, M. (2017). Network security, a challenge. International Journal of Advanced Networking and Applications, 8(5), 120–123.
11.
go back to reference Marinho, J., Granjal, J., & Monteiro, E. (2015). A survey on security attacks and countermeasures with primary user detection in cognitive radio networks. EURASIP Journal on Information Security, 1, 1–14. Marinho, J., Granjal, J., & Monteiro, E. (2015). A survey on security attacks and countermeasures with primary user detection in cognitive radio networks. EURASIP Journal on Information Security, 1, 1–14.
12.
go back to reference Wu, H., Sun, X., Guo, C., & Ren, S. (2016). Malicious user detection for wide-band cognitive radio networks. In 2016 Asia-Pacific microwave conference (APMC) (pp. 1–4). IEEE. Wu, H., Sun, X., Guo, C., & Ren, S. (2016). Malicious user detection for wide-band cognitive radio networks. In 2016 Asia-Pacific microwave conference (APMC) (pp. 1–4). IEEE.
13.
go back to reference Taggu, A., Chunka, C., & Marchang, N. (2015). Codes: A collaborative detection strategy for ssdf attacks in cognitive radio networks. In Proceedings of the third international symposium on women in computing and informatics (pp. 118–123). Taggu, A., Chunka, C., & Marchang, N. (2015). Codes: A collaborative detection strategy for ssdf attacks in cognitive radio networks. In Proceedings of the third international symposium on women in computing and informatics (pp. 118–123).
14.
go back to reference Sarala, B., Devi, S. R., Suganthy, M., & Ida, S. J. (2019). A novel authentication mechanism for cognitive radio networks. International Journal of Recent Technology and Engineering, 8(4), 713–718. Sarala, B., Devi, S. R., Suganthy, M., & Ida, S. J. (2019). A novel authentication mechanism for cognitive radio networks. International Journal of Recent Technology and Engineering, 8(4), 713–718.
15.
go back to reference Wan, R., Ding, L., Xiong, N., & Zhou, X. (2019). Mitigation strategy against spectrum-sensing data falsification attack in cognitive radio sensor networks. International Journal of Distributed Sensor Networks, 15(9), 1550147719870645.CrossRef Wan, R., Ding, L., Xiong, N., & Zhou, X. (2019). Mitigation strategy against spectrum-sensing data falsification attack in cognitive radio sensor networks. International Journal of Distributed Sensor Networks, 15(9), 1550147719870645.CrossRef
16.
go back to reference Farmani, F., Abbasi-Jannatabad, M., & Berangi, R. (2011). Detection of SSDF attack using SVDD algorithm in cognitive radio networks. In 2011 third international conference on computational intelligence, communication systems and networks (pp. 201–204). IEEE. Farmani, F., Abbasi-Jannatabad, M., & Berangi, R. (2011). Detection of SSDF attack using SVDD algorithm in cognitive radio networks. In 2011 third international conference on computational intelligence, communication systems and networks (pp. 201–204). IEEE.
17.
go back to reference Kaligineedi, P., Khabbazian, M., & Bhargava, V. K. (2010). Malicious user detection in a cognitive radio cooperative sensing system. IEEE Transactions on Wireless Communications, 9(8), 2488–2497.CrossRef Kaligineedi, P., Khabbazian, M., & Bhargava, V. K. (2010). Malicious user detection in a cognitive radio cooperative sensing system. IEEE Transactions on Wireless Communications, 9(8), 2488–2497.CrossRef
18.
go back to reference He, X., Dai, H., & Ning, P. (2013). Hmm-based malicious user detection for robust collaborative spectrum sensing. IEEE Journal on Selected Areas in Communications, 31(11), 2196–2208.CrossRef He, X., Dai, H., & Ning, P. (2013). Hmm-based malicious user detection for robust collaborative spectrum sensing. IEEE Journal on Selected Areas in Communications, 31(11), 2196–2208.CrossRef
19.
go back to reference Li, J., Liu, J., & Long, K. (2010). Reliable cooperative spectrum sensing algorithm based on Dempster–Shafer theory. In 2010 IEEE Global Telecommunications Conference GLOBECOM 2010 (pp. 1–5). IEEE. Li, J., Liu, J., & Long, K. (2010). Reliable cooperative spectrum sensing algorithm based on Dempster–Shafer theory. In 2010 IEEE Global Telecommunications Conference GLOBECOM 2010 (pp. 1–5). IEEE.
20.
go back to reference Sharifi, A. A., & Mofarreh-Bonab, M. (2018). Spectrum sensing data falsification attack in cognitive radio networks: An analytical model for evaluation and mitigation of performance degradation. AUT Journal of Electrical Engineering, 50(1), 43–50. Sharifi, A. A., & Mofarreh-Bonab, M. (2018). Spectrum sensing data falsification attack in cognitive radio networks: An analytical model for evaluation and mitigation of performance degradation. AUT Journal of Electrical Engineering, 50(1), 43–50.
21.
go back to reference Gul, N., Qureshi, I. M., Elahi, A., & Rasool, I. (2018). Defense against malicious users in cooperative spectrum sensing using genetic algorithm. International Journal of Antennas and Propagation, 2018, 2346317.CrossRef Gul, N., Qureshi, I. M., Elahi, A., & Rasool, I. (2018). Defense against malicious users in cooperative spectrum sensing using genetic algorithm. International Journal of Antennas and Propagation, 2018, 2346317.CrossRef
22.
go back to reference Dave, M. B., & Nakrani, M. B. (2014). Malicious user detection in spectrum sensing for wran using different outliers detection techniques. arXiv preprint arXiv:1405.2685 Dave, M. B., & Nakrani, M. B. (2014). Malicious user detection in spectrum sensing for wran using different outliers detection techniques. arXiv preprint arXiv:​1405.​2685
23.
go back to reference Adelantado, F., & Verikoukis, C. (2013). Detection of malicious users in cognitive radio ad hoc networks: A non-parametric statistical approach. Ad Hoc Networks, 11(8), 2367–2380.CrossRef Adelantado, F., & Verikoukis, C. (2013). Detection of malicious users in cognitive radio ad hoc networks: A non-parametric statistical approach. Ad Hoc Networks, 11(8), 2367–2380.CrossRef
24.
go back to reference Elangovan, K., Krishnasamy Tamilselvam, Y., Mohan, R. E., Iwase, M., Nemoto, T., & Wood, K. (2017). Fault diagnosis of a reconfigurable crawling-rolling robot based on support vector machines. Applied Sciences, 7(10), 1025.CrossRef Elangovan, K., Krishnasamy Tamilselvam, Y., Mohan, R. E., Iwase, M., Nemoto, T., & Wood, K. (2017). Fault diagnosis of a reconfigurable crawling-rolling robot based on support vector machines. Applied Sciences, 7(10), 1025.CrossRef
25.
go back to reference Jan, S. U., Lee, Y. D., Shin, J., & Koo, I. (2017). Sensor fault classification based on support vector machine and statistical time-domain features. IEEE Access, 5, 8682–8690.CrossRef Jan, S. U., Lee, Y. D., Shin, J., & Koo, I. (2017). Sensor fault classification based on support vector machine and statistical time-domain features. IEEE Access, 5, 8682–8690.CrossRef
26.
go back to reference Wang, F., Zhen, Z., Wang, B., & Mi, Z. (2017). Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting. Applied Sciences, 8(1), 28.CrossRef Wang, F., Zhen, Z., Wang, B., & Mi, Z. (2017). Comparative study on KNN and SVM based weather classification models for day ahead short term solar PV power forecasting. Applied Sciences, 8(1), 28.CrossRef
27.
go back to reference Shah, H. A., & Koo, I. (2018). Reliable machine learning based spectrum sensing in cognitive radio networks. In Wireless Communications and Mobile Computing 2018. Shah, H. A., & Koo, I. (2018). Reliable machine learning based spectrum sensing in cognitive radio networks. In Wireless Communications and Mobile Computing 2018.
28.
go back to reference Zhu, J., Song, Y., Jiang, D., & Song, H. (2017). A new deep-q-learning-based transmission scheduling mechanism for the cognitive internet of things. IEEE Internet of Things Journal, 5(4), 2375–2385.CrossRef Zhu, J., Song, Y., Jiang, D., & Song, H. (2017). A new deep-q-learning-based transmission scheduling mechanism for the cognitive internet of things. IEEE Internet of Things Journal, 5(4), 2375–2385.CrossRef
29.
go back to reference Giri, M. K., & Majumder, S. (2021). Eigenvalue-based cooperative spectrum sensing using kernel fuzzy c-means clustering. Digital Signal Processing, 111, 102996.CrossRef Giri, M. K., & Majumder, S. (2021). Eigenvalue-based cooperative spectrum sensing using kernel fuzzy c-means clustering. Digital Signal Processing, 111, 102996.CrossRef
30.
go back to reference Giri, M. K., & Majumder, S. (2022). On eigenvalue-based cooperative spectrum sensing using feature extraction and maximum entropy fuzzy clustering. Journal of Ambient Intelligence and Humanized Computing, 1–15. Giri, M. K., & Majumder, S. (2022). On eigenvalue-based cooperative spectrum sensing using feature extraction and maximum entropy fuzzy clustering. Journal of Ambient Intelligence and Humanized Computing, 1–15.
31.
go back to reference Huang, Y. D., Liang, Y. C., & Yang, G. (2016). A fuzzy support vector machine algorithm for cooperative spectrum sensing with noise uncertainty. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE. Huang, Y. D., Liang, Y. C., & Yang, G. (2016). A fuzzy support vector machine algorithm for cooperative spectrum sensing with noise uncertainty. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.
32.
go back to reference Jan, S. U., Vu, V. H., & Koo, I. (2018). Throughput maximization using an SVM for multi-class hypothesis-based spectrum sensing in cognitive radio. Applied Sciences, 8(3), 421.CrossRef Jan, S. U., Vu, V. H., & Koo, I. (2018). Throughput maximization using an SVM for multi-class hypothesis-based spectrum sensing in cognitive radio. Applied Sciences, 8(3), 421.CrossRef
33.
go back to reference Li, Z., Wu, W., Liu, X., & Qi, P. (2018). Improved cooperative spectrum sensing model based on machine learning for cognitive radio networks. IET Communications, 12(19), 2485–2492.CrossRef Li, Z., Wu, W., Liu, X., & Qi, P. (2018). Improved cooperative spectrum sensing model based on machine learning for cognitive radio networks. IET Communications, 12(19), 2485–2492.CrossRef
34.
go back to reference Rahman, M., Lee, Y. D., Koo, I., et al. (2016). An efficient transmission mode selection based on reinforcement learning for cooperative cognitive radio networks. Human-centric Computing and Information Sciences, 6(1), 1–14.CrossRef Rahman, M., Lee, Y. D., Koo, I., et al. (2016). An efficient transmission mode selection based on reinforcement learning for cooperative cognitive radio networks. Human-centric Computing and Information Sciences, 6(1), 1–14.CrossRef
35.
go back to reference Alshawaqfeh, M., Wang, X., Ekti, A. R., Shakir, M. Z., Qaraqe, K., & Serpedin, E. (2015). A survey of machine learning algorithms and their applications in cognitive radio. In International conference on cognitive radio oriented wireless networks (pp. 790–801). Springer. Alshawaqfeh, M., Wang, X., Ekti, A. R., Shakir, M. Z., Qaraqe, K., & Serpedin, E. (2015). A survey of machine learning algorithms and their applications in cognitive radio. In International conference on cognitive radio oriented wireless networks (pp. 790–801). Springer.
37.
go back to reference Cadena Muñoz, E., Pedraza Martínez, L. F., & Ortiz Triviño, J. E. (2020). Detection of malicious primary user emulation based on a support vector machine for a mobile cognitive radio network using software-defined radio. Electronics, 9(8), 1282.CrossRef Cadena Muñoz, E., Pedraza Martínez, L. F., & Ortiz Triviño, J. E. (2020). Detection of malicious primary user emulation based on a support vector machine for a mobile cognitive radio network using software-defined radio. Electronics, 9(8), 1282.CrossRef
38.
go back to reference Chen, C., Song, M., Xin, C., & Alam, M. (2012). A robust malicious user detection scheme in cooperative spectrum sensing. In 2012 IEEE global communications conference (GLOBECOM) (pp. 4856–4861). IEEE. Chen, C., Song, M., Xin, C., & Alam, M. (2012). A robust malicious user detection scheme in cooperative spectrum sensing. In 2012 IEEE global communications conference (GLOBECOM) (pp. 4856–4861). IEEE.
39.
go back to reference Albehadili, A., Ali, A., Jahan, F., Javaid, A. Y., Oluochy, J., & Devabhaktuniz, V. (2019). Machine learning-based primary user emulation attack detection in cognitive radio networks using pattern described link-signature (PDLS). In 2019 wireless telecommunications symposium (WTS) (pp. 1–7). IEEE. Albehadili, A., Ali, A., Jahan, F., Javaid, A. Y., Oluochy, J., & Devabhaktuniz, V. (2019). Machine learning-based primary user emulation attack detection in cognitive radio networks using pattern described link-signature (PDLS). In 2019 wireless telecommunications symposium (WTS) (pp. 1–7). IEEE.
40.
go back to reference Lu, J., Li, L., Chen, G., Shen, D., Pham, K., & Blasch, E. (2017). Machine learning based intelligent cognitive network using fog computing. Sensors and Systems for Space Applications X, SPIE, 10196, 149–157. Lu, J., Li, L., Chen, G., Shen, D., Pham, K., & Blasch, E. (2017). Machine learning based intelligent cognitive network using fog computing. Sensors and Systems for Space Applications X, SPIE, 10196, 149–157.
41.
go back to reference Furqan, H. M., Aygül, M. A., & Nazzal, M. (2020). Primary user emulation and jamming attack detection in cognitive radio via sparse coding. EURASIP Journal on Wireless Communications and Networking, 1, 1–19. Furqan, H. M., Aygül, M. A., & Nazzal, M. (2020). Primary user emulation and jamming attack detection in cognitive radio via sparse coding. EURASIP Journal on Wireless Communications and Networking, 1, 1–19.
42.
go back to reference Khan, M. S., Khan, L., Gul, N., Amir, M., Kim, J., & Kim, S. M. (2020). Support vector machine-based classification of malicious users in cognitive radio networks. Wireless Communications and Mobile Computing, 2020, 8846948.CrossRef Khan, M. S., Khan, L., Gul, N., Amir, M., Kim, J., & Kim, S. M. (2020). Support vector machine-based classification of malicious users in cognitive radio networks. Wireless Communications and Mobile Computing, 2020, 8846948.CrossRef
43.
go back to reference Hossain, M. S., & Miah, M. S. (2021). Machine learning-based malicious user detection for reliable cooperative radio spectrum sensing in cognitive radio-internet of things. Machine Learning with Applications, 5, 100052.CrossRef Hossain, M. S., & Miah, M. S. (2021). Machine learning-based malicious user detection for reliable cooperative radio spectrum sensing in cognitive radio-internet of things. Machine Learning with Applications, 5, 100052.CrossRef
44.
go back to reference Zhang, Y., Wu, Q., & Shikh-Bahaei, M. R. (2020). On ensemble learning-based secure fusion strategy for robust cooperative sensing in full-duplex cognitive radio networks. IEEE Transactions on Communications, 68(10), 6086–6100.CrossRef Zhang, Y., Wu, Q., & Shikh-Bahaei, M. R. (2020). On ensemble learning-based secure fusion strategy for robust cooperative sensing in full-duplex cognitive radio networks. IEEE Transactions on Communications, 68(10), 6086–6100.CrossRef
45.
go back to reference Kumar, G. P., & Reddy, D. K. (2022). Hierarchical cat and mouse based ensemble extreme learning machine for spectrum sensing data falsification attack detection in cognitive radio network. Microprocessors and Microsystems, 90, 104523.CrossRef Kumar, G. P., & Reddy, D. K. (2022). Hierarchical cat and mouse based ensemble extreme learning machine for spectrum sensing data falsification attack detection in cognitive radio network. Microprocessors and Microsystems, 90, 104523.CrossRef
46.
go back to reference Xu, Z., Sun, Z., & Guo, L. (2021). Throughput maximization of collaborative spectrum sensing under SSDF attacks. IEEE Transactions on Vehicular Technology, 70(8), 8378–8383.CrossRef Xu, Z., Sun, Z., & Guo, L. (2021). Throughput maximization of collaborative spectrum sensing under SSDF attacks. IEEE Transactions on Vehicular Technology, 70(8), 8378–8383.CrossRef
47.
go back to reference Fu, Y., & He, Z. (2019). Bayesian-inference-based sliding window trust model against probabilistic SSDF attack in cognitive radio networks. IEEE Systems Journal, 14(2), 1764–1775.CrossRef Fu, Y., & He, Z. (2019). Bayesian-inference-based sliding window trust model against probabilistic SSDF attack in cognitive radio networks. IEEE Systems Journal, 14(2), 1764–1775.CrossRef
48.
go back to reference Ponnusamy, V., Kottursamy, K., Karthick, T., Mukeshkrishnan, M., Malathi, D., & Ahanger, T. A. (2020). Primary user emulation attack mitigation using neural network. Computers & Electrical Engineering, 88, 106849.CrossRef Ponnusamy, V., Kottursamy, K., Karthick, T., Mukeshkrishnan, M., Malathi, D., & Ahanger, T. A. (2020). Primary user emulation attack mitigation using neural network. Computers & Electrical Engineering, 88, 106849.CrossRef
49.
go back to reference Taggu, A., & Marchang, N. (2021). Detecting byzantine attacks in cognitive radio networks: a two-layered approach using hidden Markov model and machine learning. Pervasive and Mobile Computing, 77, 101461.CrossRef Taggu, A., & Marchang, N. (2021). Detecting byzantine attacks in cognitive radio networks: a two-layered approach using hidden Markov model and machine learning. Pervasive and Mobile Computing, 77, 101461.CrossRef
50.
go back to reference Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.CrossRef
51.
go back to reference Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef
52.
go back to reference Huang, G. B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2(2), 107–122.CrossRef Huang, G. B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: A survey. International Journal of Machine Learning and Cybernetics, 2(2), 107–122.CrossRef
53.
go back to reference Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541) (Vol. 2, pp. 985-990). IEEE. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541) (Vol. 2, pp. 985-990). IEEE.
55.
go back to reference Giri, M. K., & Majumder, S. (2022). Cooperative spectrum sensing using extreme learning machines for cognitive radio networks. IETE Technical Review, 39, 698–712.CrossRef Giri, M. K., & Majumder, S. (2022). Cooperative spectrum sensing using extreme learning machines for cognitive radio networks. IETE Technical Review, 39, 698–712.CrossRef
Metadata
Title
Extreme Learning Machine Based Identification of Malicious Users for Secure Cooperative Spectrum Sensing in Cognitive Radio Networks
Authors
Manish Kumar Giri
Saikat Majumder
Publication date
21-03-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 3/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10368-6

Other articles of this Issue 3/2023

Wireless Personal Communications 3/2023 Go to the issue