Skip to main content
Top
Published in: Journal of Polymer Research 4/2024

01-04-2024 | Original Paper

Fabrication, and characterization of crosslinked sodium alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded scaffold

Authors: Mohammad Mahdi Safikhani, Azadeh Asefnejad, Rouhollah Mehdinavaz Aghdam, Sadegh Rahmati

Published in: Journal of Polymer Research | Issue 4/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Coronary restenosis is the primary unsolved problem following open heart surgery or percutaneous transluminal coronary angioplasty, and yet, it remains unknown how a pharmaceutical strategy minimizes restenosis by scaffold-based administration of several medicines. In this study, 3D-printed hexagonal polymer scaffolds of sodium alginate/hyaluronic acid/gelatin (SA/HA/Gel) loaded with heparin drug were fabricated. The morphology, physicochemical, and surface properties of the scaffolds were investigated through SEM, FTIR, porosity, wettability, water absorption, mechanical properties, biodegradability, and heparin release studies. The cell-scaffold interactions were studied by the cell attachment assays and MTT assay on L929 cell lines. The investigation demonstrated that raising the print angle resulted in 3D-printed scaffolds having higher porosity percentages, mechanical qualities, and heparin release (P < 0.05), but had no discernible impact on the scaffolds’ biological properties (P > 0.05). Heparin showed a regulated slow-release behavior that was consistent with the scaffolds’ rate of degradation and may be continually efficient during tissue regeneration. According to the outcomes of the in vitro biological evaluation, the 3D-printed scaffolds showed suitable cell attachment and biocompatibility (> 90%), and they were not overtly hazardous. The findings support the use of the fabricated 3D-printed SA/HA/Gel heparin-loaded scaffolds for cardiovascular tissue applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C 44:24–37CrossRef Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C 44:24–37CrossRef
3.
go back to reference Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10:34002CrossRef Mosadegh B, Xiong G, Dunham S, Min JK (2015) Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater 10:34002CrossRef
4.
go back to reference Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, Vahdat S, Baharvand H (2015) Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering. J Biomed Mater Res A 103:3179–3187PubMedCrossRef Baheiraei N, Yeganeh H, Ai J, Gharibi R, Ebrahimi-Barough S, Azami M, Vahdat S, Baharvand H (2015) Preparation of a porous conductive scaffold from aniline pentamer‐modified polyurethane/PCL blend for cardiac tissue engineering. J Biomed Mater Res A 103:3179–3187PubMedCrossRef
6.
go back to reference Lee S-J, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, Zuo YY, Zhang LG (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15:16018CrossRef Lee S-J, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, Zuo YY, Zhang LG (2018) 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 15:16018CrossRef
8.
go back to reference Zhu K, Shin SR, van Kempen T, Li Y, Ponraj V, Nasajpour A, Mandla S, Hu N, Liu X, Leijten J (2017) Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater 27:1605352PubMedPubMedCentralCrossRef Zhu K, Shin SR, van Kempen T, Li Y, Ponraj V, Nasajpour A, Mandla S, Hu N, Liu X, Leijten J (2017) Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater 27:1605352PubMedPubMedCentralCrossRef
10.
go back to reference Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481PubMedCrossRef Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481PubMedCrossRef
11.
go back to reference Ma G, Fang D, Liu Y, Zhu X, Nie J (2012) Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743PubMedCrossRef Ma G, Fang D, Liu Y, Zhu X, Nie J (2012) Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743PubMedCrossRef
13.
go back to reference Wang Y, Cai L-Q, Nugraha B, Gao Y, Leo HL (2014) Current hydrogel solutions for repairing and regeneration of complex tissues. Curr Med Chem 21:2480–2496PubMedCrossRef Wang Y, Cai L-Q, Nugraha B, Gao Y, Leo HL (2014) Current hydrogel solutions for repairing and regeneration of complex tissues. Curr Med Chem 21:2480–2496PubMedCrossRef
14.
go back to reference Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR, Irani M (2021) Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers. J Drug Deliv Sci Technol 67:102937CrossRef Abasalta M, Asefnejad A, Khorasani MT, Saadatabadi AR, Irani M (2021) Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers. J Drug Deliv Sci Technol 67:102937CrossRef
15.
go back to reference Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348PubMedCrossRef Gaetani R, Feyen DAM, Verhage V, Slaats R, Messina E, Christman KL, Giacomello A, Doevendans PAFM, Sluijter JPG (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348PubMedCrossRef
16.
go back to reference Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tägil M (2018) Gelatin-hydroxyapatite-calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties. J Control Release 272:83–96PubMedCrossRef Raina DB, Larsson D, Mrkonjic F, Isaksson H, Kumar A, Lidgren L, Tägil M (2018) Gelatin-hydroxyapatite-calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties. J Control Release 272:83–96PubMedCrossRef
17.
go back to reference Erdem A, Darabi MA, Nasiri R, Sangabathuni S, Ertas YN, Alem H, Hosseini V, Shamloo A, Nasr AS (2020) Ahadian, 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Adv Healthc Mater 9:1901794CrossRef Erdem A, Darabi MA, Nasiri R, Sangabathuni S, Ertas YN, Alem H, Hosseini V, Shamloo A, Nasr AS (2020) Ahadian, 3D bioprinting of oxygenated cell-laden gelatin methacryloyl constructs. Adv Healthc Mater 9:1901794CrossRef
18.
go back to reference Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331PubMedCrossRef Sahoo N, Sahoo RK, Biswas N, Guha A, Kuotsu K (2015) Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol 81:317–331PubMedCrossRef
19.
go back to reference Spencer AR, Shirzaei Sani E, Soucy JR, Corbet CC, Primbetova A, Koppes RA, Annabi N (2019) Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces 11:30518–30533PubMedPubMedCentralCrossRef Spencer AR, Shirzaei Sani E, Soucy JR, Corbet CC, Primbetova A, Koppes RA, Annabi N (2019) Bioprinting of a cell-laden conductive hydrogel composite. ACS Appl Mater Interfaces 11:30518–30533PubMedPubMedCentralCrossRef
20.
go back to reference Farsi M, Asefnejad A, Baharifar H (2022) A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Prog Biomater 11:67–77PubMedPubMedCentralCrossRef Farsi M, Asefnejad A, Baharifar H (2022) A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Prog Biomater 11:67–77PubMedPubMedCentralCrossRef
21.
go back to reference Detta N, Errico C, Dinucci D, Puppi D, Clarke DA, Reilly GC, Chiellini F (2010) Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J Mater Sci Mater Med 21:1761–1769PubMedCrossRef Detta N, Errico C, Dinucci D, Puppi D, Clarke DA, Reilly GC, Chiellini F (2010) Novel electrospun polyurethane/gelatin composite meshes for vascular grafts. J Mater Sci Mater Med 21:1761–1769PubMedCrossRef
22.
go back to reference Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951PubMedCrossRef Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34:940–951PubMedCrossRef
23.
go back to reference Luo Y, Li Y, Qin X, Wa Q (2018) 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 146:12–19CrossRef Luo Y, Li Y, Qin X, Wa Q (2018) 3D printing of concentrated alginate/gelatin scaffolds with homogeneous nano apatite coating for bone tissue engineering. Mater Des 146:12–19CrossRef
25.
go back to reference Chen L, He Z, Chen B, Yang M, Zhao Y, Sun W, Xiao Z, Zhang J, Dai J (2010) Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J Mater Sci Mater Med 21:309–317PubMedCrossRef Chen L, He Z, Chen B, Yang M, Zhao Y, Sun W, Xiao Z, Zhang J, Dai J (2010) Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold. J Mater Sci Mater Med 21:309–317PubMedCrossRef
26.
go back to reference Zhao B, Zhao Z, Ma J, Ma X (2019) Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor. Neurosci Lett 705:259–264PubMedCrossRef Zhao B, Zhao Z, Ma J, Ma X (2019) Modulation of angiogenic potential of tissue-engineered peripheral nerve by covalent incorporation of heparin and loading with vascular endothelial growth factor. Neurosci Lett 705:259–264PubMedCrossRef
27.
go back to reference Castilho M, Rodrigues J, Pires I, Gouveia B, Pereira M, Moseke C, Groll J, Ewald A, Vorndran E (2015) Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:15004CrossRef Castilho M, Rodrigues J, Pires I, Gouveia B, Pereira M, Moseke C, Groll J, Ewald A, Vorndran E (2015) Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing. Biofabrication 7:15004CrossRef
28.
go back to reference Arabi N, Zamanian A, Rashvand SN, Ghorbani F (2018) The tunable porous structure of gelatin–bioglass nanocomposite scaffolds for bone tissue engineering applications: physicochemical, mechanical, and in vitro properties. Macromol Mater Eng 303(3):1700539CrossRef Arabi N, Zamanian A, Rashvand SN, Ghorbani F (2018) The tunable porous structure of gelatin–bioglass nanocomposite scaffolds for bone tissue engineering applications: physicochemical, mechanical, and in vitro properties. Macromol Mater Eng 303(3):1700539CrossRef
30.
go back to reference Tranoudis I, Efron N (2004) Water properties of soft contact lens materials. Contact Lens Anterior Eye 27:193–208PubMedCrossRef Tranoudis I, Efron N (2004) Water properties of soft contact lens materials. Contact Lens Anterior Eye 27:193–208PubMedCrossRef
31.
go back to reference Hsieh C-F, Chen C-H, Kao H-H, Govindaraju DT, Dash BS, Chen J-P (2022) PLGA/gelatin/hyaluronic acid fibrous membrane scaffold for therapeutic delivery of adipose-derived stem cells to promote wound healing. Biomedicines. 10:2902PubMedPubMedCentralCrossRef Hsieh C-F, Chen C-H, Kao H-H, Govindaraju DT, Dash BS, Chen J-P (2022) PLGA/gelatin/hyaluronic acid fibrous membrane scaffold for therapeutic delivery of adipose-derived stem cells to promote wound healing. Biomedicines. 10:2902PubMedPubMedCentralCrossRef
33.
go back to reference Dutta SD, Hexiu J, Patel DK, Ganguly K (2021) Lim, 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol 167:644–658PubMedCrossRef Dutta SD, Hexiu J, Patel DK, Ganguly K (2021) Lim, 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering. Int J Biol Macromol 167:644–658PubMedCrossRef
34.
go back to reference Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491PubMedCrossRef
35.
go back to reference Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y (2017) Yan, 3D-printed cellular structures for bone biomimetic implants. Addit Manuf 15:93–101 Limmahakhun S, Oloyede A, Sitthiseripratip K, Xiao Y (2017) Yan, 3D-printed cellular structures for bone biomimetic implants. Addit Manuf 15:93–101
36.
go back to reference Baniasadi H, Sa AR, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366PubMedCrossRef Baniasadi H, Sa AR, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366PubMedCrossRef
37.
go back to reference Roy S, Rhim J-W (2021) Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids Surf B Biointerfaces 204:111830PubMedCrossRef Roy S, Rhim J-W (2021) Fabrication of bioactive binary composite film based on gelatin/chitosan incorporated with cinnamon essential oil and rutin. Colloids Surf B Biointerfaces 204:111830PubMedCrossRef
38.
go back to reference Haung S-M, Lin Y-T, Liu S-M, Chen J-C, Chen W-C (2021) In vitro evaluation of a composite gelatin–hyaluronic acid–alginate porous scaffold with different pore distributions for cartilage regeneration. Gels 7:165PubMedPubMedCentralCrossRef Haung S-M, Lin Y-T, Liu S-M, Chen J-C, Chen W-C (2021) In vitro evaluation of a composite gelatin–hyaluronic acid–alginate porous scaffold with different pore distributions for cartilage regeneration. Gels 7:165PubMedPubMedCentralCrossRef
39.
go back to reference Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J (2018) Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol 116:1026–1036PubMedCrossRef Liu D, Lian Y, Fang Q, Liu L, Zhang J, Li J (2018) Hyaluronic-acid-modified lipid-polymer hybrid nanoparticles as an efficient ocular delivery platform for moxifloxacin hydrochloride. Int J Biol Macromol 116:1026–1036PubMedCrossRef
40.
go back to reference Athamneh T, Amin A, Benke E, Ambrus R, Leopold CS, Gurikov P, Smirnova I (2019) Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J Supercrit Fluids 150:49–55CrossRef Athamneh T, Amin A, Benke E, Ambrus R, Leopold CS, Gurikov P, Smirnova I (2019) Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery. J Supercrit Fluids 150:49–55CrossRef
41.
go back to reference Li X, Xu P, Cheng Y, Zhang W, Zheng B, Wang Q (2020) Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Mater Sci Eng C 111:110749CrossRef Li X, Xu P, Cheng Y, Zhang W, Zheng B, Wang Q (2020) Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism. Mater Sci Eng C 111:110749CrossRef
44.
go back to reference Fir MM, Smidovnik A, Milivojevic L, Zmitek J, Prosek M (2009) Studies of CoQ10 and cyclodextrin complexes: solubility, thermo-and photo-stability. J Incl Phenom Macrocycl Chem 64:225–232CrossRef Fir MM, Smidovnik A, Milivojevic L, Zmitek J, Prosek M (2009) Studies of CoQ10 and cyclodextrin complexes: solubility, thermo-and photo-stability. J Incl Phenom Macrocycl Chem 64:225–232CrossRef
45.
go back to reference Paxton NC, Woodruff MA (2022) Measuring contact angles on hydrophilic porous scaffolds by implementing a novel raised platform approach: a technical note. Polym Adv Technol 33:3759–3765CrossRef Paxton NC, Woodruff MA (2022) Measuring contact angles on hydrophilic porous scaffolds by implementing a novel raised platform approach: a technical note. Polym Adv Technol 33:3759–3765CrossRef
46.
48.
go back to reference Ben N, Halima (2016) Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832CrossRef Ben N, Halima (2016) Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv 6:39823–39832CrossRef
49.
go back to reference Nguyen-Truong M, Li YV, Wang Z (2020) Mechanical considerations of electrospun scaffolds for myocardial tissue and regenerative engineering. Bioengineering 7:122PubMedPubMedCentralCrossRef Nguyen-Truong M, Li YV, Wang Z (2020) Mechanical considerations of electrospun scaffolds for myocardial tissue and regenerative engineering. Bioengineering 7:122PubMedPubMedCentralCrossRef
50.
go back to reference Vishwas M, Basavaraj CK (2017) Studies on optimizing process parameters of fused deposition modelling technology for ABS. Mater Today Proc. 4:10994–11003CrossRef Vishwas M, Basavaraj CK (2017) Studies on optimizing process parameters of fused deposition modelling technology for ABS. Mater Today Proc. 4:10994–11003CrossRef
51.
go back to reference Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264PubMedCrossRef Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264PubMedCrossRef
52.
go back to reference Schmid R, Schmidt SK, Detsch R, Horder H, Blunk T, Schrüfer S, Schubert DW, Fischer L, Thievessen I, Heltmann-Meyer S (2022) A New Printable Alginate/Hyaluronic Acid/Gelatin hydrogel suitable for Biofabrication of in Vitro and in vivo metastatic melanoma models. Adv Funct Mater 32:2107993CrossRef Schmid R, Schmidt SK, Detsch R, Horder H, Blunk T, Schrüfer S, Schubert DW, Fischer L, Thievessen I, Heltmann-Meyer S (2022) A New Printable Alginate/Hyaluronic Acid/Gelatin hydrogel suitable for Biofabrication of in Vitro and in vivo metastatic melanoma models. Adv Funct Mater 32:2107993CrossRef
53.
go back to reference Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32:889–900CrossRef Pan T, Song W, Cao X, Wang Y (2016) 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32:889–900CrossRef
54.
go back to reference Joshi A, Kaur T, Singh N (2022) 3D bioprinted alginate-silk-based smart cell-instructive scaffolds for dual differentiation of human mesenchymal stem cells. ACS Appl Bio Mater 5:2870–2879PubMedCrossRef Joshi A, Kaur T, Singh N (2022) 3D bioprinted alginate-silk-based smart cell-instructive scaffolds for dual differentiation of human mesenchymal stem cells. ACS Appl Bio Mater 5:2870–2879PubMedCrossRef
55.
go back to reference Liu C, Qin W, Wang Y, Ma J, Liu J, Wu S, Zhao H (2021) 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int J Nanomed 16:8417CrossRef Liu C, Qin W, Wang Y, Ma J, Liu J, Wu S, Zhao H (2021) 3D printed gelatin/sodium alginate hydrogel scaffolds doped with nano-attapulgite for bone tissue repair. Int J Nanomed 16:8417CrossRef
56.
go back to reference Yu Y, Chen J, Chen R, Cao L, Tang W, Lin D, Wang J, Liu C (2015) Enhancement of VEGF-mediated angiogenesis by 2-N, 6-O-sulfated chitosan-coated hierarchical PLGA scaffolds. ACS Appl Mater Interfaces 7:9982–9990PubMedCrossRef Yu Y, Chen J, Chen R, Cao L, Tang W, Lin D, Wang J, Liu C (2015) Enhancement of VEGF-mediated angiogenesis by 2-N, 6-O-sulfated chitosan-coated hierarchical PLGA scaffolds. ACS Appl Mater Interfaces 7:9982–9990PubMedCrossRef
58.
go back to reference Zhang B, Nasereddin J, McDonagh T, von Zeppelin D, Gleadall A, Alqahtani F, Bibb R, Belton P, Qi S (2021) Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm 604:120626PubMedCrossRef Zhang B, Nasereddin J, McDonagh T, von Zeppelin D, Gleadall A, Alqahtani F, Bibb R, Belton P, Qi S (2021) Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharm 604:120626PubMedCrossRef
Metadata
Title
Fabrication, and characterization of crosslinked sodium alginate/hyaluronic acid/gelatin 3Dprinted heparin-loaded scaffold
Authors
Mohammad Mahdi Safikhani
Azadeh Asefnejad
Rouhollah Mehdinavaz Aghdam
Sadegh Rahmati
Publication date
01-04-2024
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 4/2024
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-024-03942-4

Other articles of this Issue 4/2024

Journal of Polymer Research 4/2024 Go to the issue

Premium Partners