Skip to main content
Top
Published in: Journal of Materials Science 23/2017

16-08-2017 | Chemical routes to materials

Fabrication of Janus particles via a “photografting-from” method and gold photoreduction

Authors: Nicolò Razza, Micaela Castellino, Marco Sangermano

Published in: Journal of Materials Science | Issue 23/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Faster and simpler methods for the fabrication of Janus particles are of tremendous importance for a real implementation of these particles. By combining thiol-modified silica particles (SMPs) with the use of UV light, it is possible to rapidly fabricate Janus particles coated with polymer brushes and gold nanoparticles via photochemical emulsion-assisted route. From the silica particle surface, polymeric brushes of polyethylene(glycol), PEG, were grafted via a photografting-from method on one hemisphere by using the thiol groups as photoinitiator of the polymerization. The other hemisphere was coated with gold nanoparticles (AuNPs) generated in situ via photoreduction of chloroauric acid promoted by Norrish type I photoinitiator. PEG/AuNPs@SMPs coated with Au nanoparticles with average diameter of 12.7 or 22.5 nm were obtained by playing on the mass ratio between thiol-modified silica particles and gold precursor. The Janus PEG/AuNPs@SMPs were fully characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and UV–Vis spectroscopy. This strategy merges the advantages of emulsion-based selective masking and UV-induced reactions, and it is proved to be a feasible and fast route (reactions are completed in dozens of minutes) for Janus particles fabrication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Interestingly, SIPs, i.e., grafting-from methodologies, allow the highest grafting density if compared to grafting-to methods [24].
 
Literature
1.
go back to reference Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40CrossRef Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3(1):33–40CrossRef
2.
go back to reference Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRef Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711CrossRef
3.
go back to reference Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of escherichia coli by using antibody-conjugated silver nanoshells. Small 2(3):335–338CrossRef Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of escherichia coli by using antibody-conjugated silver nanoshells. Small 2(3):335–338CrossRef
4.
go back to reference Kalele SA, Ashtaputre SS, Hebalkar NY, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2005) Optical detection of antibody using silica–silver core–shell particles. Chem Phys Lett 404(1):136–141CrossRef Kalele SA, Ashtaputre SS, Hebalkar NY, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2005) Optical detection of antibody using silica–silver core–shell particles. Chem Phys Lett 404(1):136–141CrossRef
5.
go back to reference Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75(10):2377–2381CrossRef Hirsch LR, Jackson JB, Lee A, Halas NJ, West JL (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75(10):2377–2381CrossRef
6.
go back to reference Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327(5961):68–72CrossRef Crossley S, Faria J, Shen M, Resasco DE (2010) Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 327(5961):68–72CrossRef
7.
go back to reference Chen Q, Whitmer JK, Jiang S, Bae SC, Luijten E, Granick S (2011) Supracolloidal reaction kinetics of Janus spheres. Science 331:199–202CrossRef Chen Q, Whitmer JK, Jiang S, Bae SC, Luijten E, Granick S (2011) Supracolloidal reaction kinetics of Janus spheres. Science 331:199–202CrossRef
8.
go back to reference Walther A, Hoffmann M, Müller AHE (2008) Emulsion polymerization using Janus particles as stabilizers. Angew Chem Int Ed Engl 47(4):711–714CrossRef Walther A, Hoffmann M, Müller AHE (2008) Emulsion polymerization using Janus particles as stabilizers. Angew Chem Int Ed Engl 47(4):711–714CrossRef
9.
go back to reference Casagrande C, Fabre P, Raphael E, Veyssie M (1989) “Janus Beads”: realization and behaviour at water/oil interfaces. Europhys Lett 9(3):251CrossRef Casagrande C, Fabre P, Raphael E, Veyssie M (1989) “Janus Beads”: realization and behaviour at water/oil interfaces. Europhys Lett 9(3):251CrossRef
10.
go back to reference Yi Y, Sanchez L, Gao Y, Yu Y (2016) Janus particles for biological imaging and sensing. Analyst 141:3526–3539CrossRef Yi Y, Sanchez L, Gao Y, Yu Y (2016) Janus particles for biological imaging and sensing. Analyst 141:3526–3539CrossRef
11.
go back to reference Seh ZW, Liu S, Zhang SY, Bharathi MS, Ramanarayan H, Low M, Shah KW, Zhang YW, Han MY (2011) Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. Angew Chem Int Ed 50:10140–10143CrossRef Seh ZW, Liu S, Zhang SY, Bharathi MS, Ramanarayan H, Low M, Shah KW, Zhang YW, Han MY (2011) Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. Angew Chem Int Ed 50:10140–10143CrossRef
12.
go back to reference Hu J, Zhou S, Sun Y, Fang X, Wu L (2012) Fabrication, properties and applications of Janus particles. Chem Soc Rev 41:4356–4378CrossRef Hu J, Zhou S, Sun Y, Fang X, Wu L (2012) Fabrication, properties and applications of Janus particles. Chem Soc Rev 41:4356–4378CrossRef
13.
go back to reference Wang C, Yin H, Dai S, Sun S (2010) A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem Mater 22:3277–3282CrossRef Wang C, Yin H, Dai S, Sun S (2010) A general approach to noble metal–metal oxide dumbbell nanoparticles and their catalytic application for CO oxidation. Chem Mater 22:3277–3282CrossRef
14.
go back to reference Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A (2015) Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl Mater Interfaces 7:21218–21225CrossRef Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A (2015) Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl Mater Interfaces 7:21218–21225CrossRef
15.
go back to reference Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113(7):5194–5261CrossRef Walther A, Müller AHE (2013) Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev 113(7):5194–5261CrossRef
16.
17.
go back to reference Choi J, Zhao Y, Zhang D, Chien S, Lo YH (2003) Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Lett 3(8):995–1000CrossRef Choi J, Zhao Y, Zhang D, Chien S, Lo YH (2003) Patterned fluorescent particles as nanoprobes for the investigation of molecular interactions. Nano Lett 3(8):995–1000CrossRef
18.
go back to reference Chen ZM, Gang T, Yan X, Li X, Zhang JH, Wang YF, Yang B (2006) Ordered silica microspheres unsymmetrically coated with Ag nanoparticles, and Ag-nanoparticle-doped polymer voids fabricated by microcontact printing and chemical reduction. Adv Mater 18(7):924–929CrossRef Chen ZM, Gang T, Yan X, Li X, Zhang JH, Wang YF, Yang B (2006) Ordered silica microspheres unsymmetrically coated with Ag nanoparticles, and Ag-nanoparticle-doped polymer voids fabricated by microcontact printing and chemical reduction. Adv Mater 18(7):924–929CrossRef
19.
go back to reference Wang F, Phonthammachai N, Mya KY, Tjiu WW, He C (2011) PEG-POSS assisted facile preparation of amphiphilic gold nanoparticles and interface formation of Janus nanoparticles. Chem Commun 47(2):767–769CrossRef Wang F, Phonthammachai N, Mya KY, Tjiu WW, He C (2011) PEG-POSS assisted facile preparation of amphiphilic gold nanoparticles and interface formation of Janus nanoparticles. Chem Commun 47(2):767–769CrossRef
20.
go back to reference Hong L, Jiang S, Granick S (2006) Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23):9495–9499CrossRef Hong L, Jiang S, Granick S (2006) Simple method to produce Janus colloidal particles in large quantity. Langmuir 22(23):9495–9499CrossRef
21.
go back to reference Jiang S, Granick S (2008) Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 24(6):2438–2445CrossRef Jiang S, Granick S (2008) Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 24(6):2438–2445CrossRef
22.
go back to reference Jiang S, Schultz MJ, Chen Q, Moore JS, Granick S (2008) Solvent-free synthesis of Janus colloidal particles. Langmuir 24(18):10073–10077CrossRef Jiang S, Schultz MJ, Chen Q, Moore JS, Granick S (2008) Solvent-free synthesis of Janus colloidal particles. Langmuir 24(18):10073–10077CrossRef
23.
go back to reference Berger S, Synytska A, Ionov L, Eichhorn KJ, Stamm M (2008) Stimuli-responsive bicomponent polymer janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41:9669–9676CrossRef Berger S, Synytska A, Ionov L, Eichhorn KJ, Stamm M (2008) Stimuli-responsive bicomponent polymer janus particles by “grafting from”/“grafting to” approaches. Macromolecules 41:9669–9676CrossRef
24.
go back to reference Edmondson S, Osborne VL, Huck WT (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22CrossRef Edmondson S, Osborne VL, Huck WT (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22CrossRef
25.
go back to reference Sangermano M, Razza N, Crivello JV (2014) Cationic UV-curing: technology and applications. Macromol Mater Eng 299:775–793CrossRef Sangermano M, Razza N, Crivello JV (2014) Cationic UV-curing: technology and applications. Macromol Mater Eng 299:775–793CrossRef
26.
go back to reference Decker C (1998) The use of UV irradiation in polymerization. Polym Int 45(2):133–141CrossRef Decker C (1998) The use of UV irradiation in polymerization. Polym Int 45(2):133–141CrossRef
27.
go back to reference Khire VS, Lee TY, Bowman CN (2007) Surface modification using thiol–acrylate conjugate addition reactions. Macromolecules 40:5669–5677CrossRef Khire VS, Lee TY, Bowman CN (2007) Surface modification using thiol–acrylate conjugate addition reactions. Macromolecules 40:5669–5677CrossRef
28.
go back to reference Xue Y, Li X, Li H, Zhang W (2014) Quantifying thiol–gold interactions towards the efficient strength control. Nat Commun 5:4348 Xue Y, Li X, Li H, Zhang W (2014) Quantifying thiol–gold interactions towards the efficient strength control. Nat Commun 5:4348
29.
go back to reference Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913CrossRef Liu J, Sonshine DA, Shervani S, Hurt RH (2010) Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 4(11):6903–6913CrossRef
30.
go back to reference Yee C, Scotti M, Ulman A, White H, Rafailovich M, Sokolov J (1999) One-phase synthesis of thiol-functionalized platinum nanoparticles. Langmuir 15(13):4314–4316CrossRef Yee C, Scotti M, Ulman A, White H, Rafailovich M, Sokolov J (1999) One-phase synthesis of thiol-functionalized platinum nanoparticles. Langmuir 15(13):4314–4316CrossRef
31.
go back to reference Scaiano JC, Stamplecoskie KG, Hallett-Tapley GL (2012) Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem Commun 48:4798–4808CrossRef Scaiano JC, Stamplecoskie KG, Hallett-Tapley GL (2012) Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem Commun 48:4798–4808CrossRef
32.
go back to reference Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem Commun 7:801–802CrossRef Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Chem Commun 7:801–802CrossRef
33.
go back to reference Lu HB, Campbell CT, Castner DG (2000) Attachment of functionalized poly (ethylene glycol) films to gold surfaces. Langmuir 16(4):1711–1718CrossRef Lu HB, Campbell CT, Castner DG (2000) Attachment of functionalized poly (ethylene glycol) films to gold surfaces. Langmuir 16(4):1711–1718CrossRef
34.
go back to reference Vericat C, Vela ME, Benitez GA, Martin Gago JA, Torrelles X, Salvarezza RC (2006) Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111). J Phys Condens Matter 18:R867–R900CrossRef Vericat C, Vela ME, Benitez GA, Martin Gago JA, Torrelles X, Salvarezza RC (2006) Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au (111). J Phys Condens Matter 18:R867–R900CrossRef
35.
go back to reference Chen JJ, Struk KN, Brennan AB (2011) Surface modification of silicate glass using 3-(mercaptopropyl) trimethoxysilane for thiol–ene polymerization. Langmuir 27(22):13754–13761CrossRef Chen JJ, Struk KN, Brennan AB (2011) Surface modification of silicate glass using 3-(mercaptopropyl) trimethoxysilane for thiol–ene polymerization. Langmuir 27(22):13754–13761CrossRef
36.
go back to reference Kilambi H, Reddy SK, Schneidewind L, Lee TY, Stansbury JW, Bowman CN (2007) Design, development, and evaluation of monovinyl acrylates characterized by secondary functionalities as reactive diluents to diacrylates. Macromolecules 40(17):6112–6118CrossRef Kilambi H, Reddy SK, Schneidewind L, Lee TY, Stansbury JW, Bowman CN (2007) Design, development, and evaluation of monovinyl acrylates characterized by secondary functionalities as reactive diluents to diacrylates. Macromolecules 40(17):6112–6118CrossRef
37.
go back to reference Wei HY, Li Q, Ojelade M, Madbouly S, Otaigbe JU, Hoyle CE (2007) Thiol–ene free-radical and vinyl ether cationic hybrid photopolymerization. Macromolecules 40(24):8788–8793CrossRef Wei HY, Li Q, Ojelade M, Madbouly S, Otaigbe JU, Hoyle CE (2007) Thiol–ene free-radical and vinyl ether cationic hybrid photopolymerization. Macromolecules 40(24):8788–8793CrossRef
38.
go back to reference Mostegel FH, Ducker RE, Rieger PH, El Zubir O, Xia S, Radl SV, Griesser T (2015) Versatile thiol-based reactions for micrometer-and nanometer-scale photopatterning of polymers and biomolecules. J Mater Chem B 3(21):4431–4438CrossRef Mostegel FH, Ducker RE, Rieger PH, El Zubir O, Xia S, Radl SV, Griesser T (2015) Versatile thiol-based reactions for micrometer-and nanometer-scale photopatterning of polymers and biomolecules. J Mater Chem B 3(21):4431–4438CrossRef
39.
go back to reference Popat KC, Sharma S, Desai TA (2004) Quantitative XPS analysis of PEG-modified silicon surfaces. J Phys Chem B 108:5185–5188CrossRef Popat KC, Sharma S, Desai TA (2004) Quantitative XPS analysis of PEG-modified silicon surfaces. J Phys Chem B 108:5185–5188CrossRef
40.
go back to reference Yagci Y, Sangermano M, Rizza G (2008) A visible light photochemical route to silver–epoxy nanocomposites by simultaneous polymerization–reduction approach. Chem Commun 24:2771–2773CrossRef Yagci Y, Sangermano M, Rizza G (2008) A visible light photochemical route to silver–epoxy nanocomposites by simultaneous polymerization–reduction approach. Chem Commun 24:2771–2773CrossRef
41.
go back to reference Scaiano JC, Netto-Ferreira JC, Alarcon E, Billone P, Alejo CJB, Crites COL (2011) Tuning plasmon transitions and their applications in organic photochemistry. Pure Appl Chem 83(4):913–930CrossRef Scaiano JC, Netto-Ferreira JC, Alarcon E, Billone P, Alejo CJB, Crites COL (2011) Tuning plasmon transitions and their applications in organic photochemistry. Pure Appl Chem 83(4):913–930CrossRef
42.
go back to reference Kim H-S, Seo YS, Kim K, Han JW, Par Y, Cho S (2016) Concentration effect of reducing agents on green synthesis of gold nanoparticles: size, morphology, and growth mechanism. Nanoscale Res Lett 11:230CrossRef Kim H-S, Seo YS, Kim K, Han JW, Par Y, Cho S (2016) Concentration effect of reducing agents on green synthesis of gold nanoparticles: size, morphology, and growth mechanism. Nanoscale Res Lett 11:230CrossRef
43.
go back to reference Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) XPS study of supported gold catalysts: the role of Au0 and Au+δ species as active sites. Surf Interface Anal 38:215–218CrossRef Casaletto MP, Longo A, Martorana A, Prestianni A, Venezia AM (2006) XPS study of supported gold catalysts: the role of Au0 and Au species as active sites. Surf Interface Anal 38:215–218CrossRef
Metadata
Title
Fabrication of Janus particles via a “photografting-from” method and gold photoreduction
Authors
Nicolò Razza
Micaela Castellino
Marco Sangermano
Publication date
16-08-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 23/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1459-x

Other articles of this Issue 23/2017

Journal of Materials Science 23/2017 Go to the issue

Premium Partners