Skip to main content
Top
Published in: Journal of Materials Science 10/2022

07-03-2022 | Energy materials

Facile construction of single-crystalline sodium niobate anode materials: insight into the relationship of the morphology and excellent performance for lithium-ion batteries

Authors: Zhengyu Du, Qianqian Liu, Miao Cheng, Jing Hu, Tao Wei, Wanfei Li, Yun Ling, Xufei Hu, Bo Liu

Published in: Journal of Materials Science | Issue 10/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrode materials structures hold the key to enhance the performance. Based on the time-dependent growth process of niobium precursor, single-crystal Na2Nb2O6·nH2O nanowires and NaNbO3 nanocubes were successfully synthesized through a facile and friendly hydrothermal route at 180 °C under different reaction times. NaNbO3 nanowires were derived by calcination treatment of Na2Nb2O6·nH2O nanowires which was employed as self-sacrificing templates. By comparing the electrochemical behavior of these niobium-based anodes, NaNbO3 nanocubes show a discharge capacity of about 115 mA h g−1 over 1000 cycles at 1000 mA g−1, exhibiting higher reversible capacity and superior rate performance than NaNbO3 nanowires. The superior cell performance could be interpreted in terms of the different morphologies of NaNbO3, which results in the better Li-ion diffusion abilities and higher pseudo-capacitance of the as-fabricated NaNbO3 nanocubes electrode. This work provides fundamental insights into the morphology–property relationship of both NaNbO3 nanowires and NaNbO3 nanocubes, providing a solid guide for developing anode materials for Li-ion battery.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRef Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRef
2.
go back to reference Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603CrossRef Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603CrossRef
3.
go back to reference Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935CrossRef
4.
go back to reference Zhang SS (2006) The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sour 161(2):1385–1391CrossRef Zhang SS (2006) The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sour 161(2):1385–1391CrossRef
5.
go back to reference Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRef Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRef
6.
go back to reference Song MY, Kim NR, Yoon HJ, Cho SY, Jin HJ, Yun YS (2017) Long-lasting Nb2O5-based nanocomposite materials for Li-ion storage. ACS Appl Mater Inter 9(3):2267–2274CrossRef Song MY, Kim NR, Yoon HJ, Cho SY, Jin HJ, Yun YS (2017) Long-lasting Nb2O5-based nanocomposite materials for Li-ion storage. ACS Appl Mater Inter 9(3):2267–2274CrossRef
7.
go back to reference Yan L, Chen G, Sarker S, Richins S, Wang H, Xu W, Rui X, Luo H (2016) Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl Mater Inter 8(34):22213–22219CrossRef Yan L, Chen G, Sarker S, Richins S, Wang H, Xu W, Rui X, Luo H (2016) Ultrafine Nb2O5 nanocrystal coating on reduced graphene oxide as anode material for high performance sodium ion battery. ACS Appl Mater Inter 8(34):22213–22219CrossRef
8.
go back to reference Liu G, Jin B, Bao K, Xie H, Guo J, Ji X, Zhang R, Jiang Q (2017) Facile synthesis of porous Nb2O5 microspheres as anodes for lithium-ion batteries. Int J Hydrogen Energ 42(9):6065–6071CrossRef Liu G, Jin B, Bao K, Xie H, Guo J, Ji X, Zhang R, Jiang Q (2017) Facile synthesis of porous Nb2O5 microspheres as anodes for lithium-ion batteries. Int J Hydrogen Energ 42(9):6065–6071CrossRef
9.
go back to reference Wei M, Wei K, Ichihara M, Zhou H (2008) Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun 10:980–983CrossRef Wei M, Wei K, Ichihara M, Zhou H (2008) Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun 10:980–983CrossRef
10.
go back to reference Wei M, Wei K, Ichihara M, Zhou H (2008) Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun 10(7):980–983CrossRef Wei M, Wei K, Ichihara M, Zhou H (2008) Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun 10(7):980–983CrossRef
11.
go back to reference Kodama R, Terada Y, Nakai I, Komaba S, Kumagai N (2006) Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J Electrochem Soc 153(3):A583–A588CrossRef Kodama R, Terada Y, Nakai I, Komaba S, Kumagai N (2006) Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. J Electrochem Soc 153(3):A583–A588CrossRef
12.
go back to reference Liu Q, Zhang Q, Liu B, Dai WL (2020) Facile one-step hydrothermal synthesis of single-crystalline SnNb2O6 nanosheets with greatly extended visible-light response for enhanced photocatalytic performance and mechanism insight. Nanotechnology 32(6):065705CrossRef Liu Q, Zhang Q, Liu B, Dai WL (2020) Facile one-step hydrothermal synthesis of single-crystalline SnNb2O6 nanosheets with greatly extended visible-light response for enhanced photocatalytic performance and mechanism insight. Nanotechnology 32(6):065705CrossRef
13.
go back to reference Liu Q, Zhang Q, Zhang L, Dai WL (2020) Highly efficient single-crystalline NaNb1-XTaXO3 (X=0.125) wires: the synergistic effect of tantalum-doping and morphology on photocatalytic hydrogen evolution. J Mater Sci Technol 54:20–30CrossRef Liu Q, Zhang Q, Zhang L, Dai WL (2020) Highly efficient single-crystalline NaNb1-XTaXO3 (X=0.125) wires: the synergistic effect of tantalum-doping and morphology on photocatalytic hydrogen evolution. J Mater Sci Technol 54:20–30CrossRef
14.
go back to reference Takashima T, Tojo T, Inada R, Sakurai Y (2015) Characterization of mixed titanium-niobium oxide Ti2Nb10O29 annealed in vacuum as anode material for lithium-ion battery. J Power Sour 276:113–119CrossRef Takashima T, Tojo T, Inada R, Sakurai Y (2015) Characterization of mixed titanium-niobium oxide Ti2Nb10O29 annealed in vacuum as anode material for lithium-ion battery. J Power Sour 276:113–119CrossRef
15.
go back to reference Tang K, Mu X, van Aken PA, Yu Y, Maier J (2013) Nano-earl-tring TiNb2O7 as anodes for rechargeable lithium batteries. Adv Energy Mater 3(1):49–53CrossRef Tang K, Mu X, van Aken PA, Yu Y, Maier J (2013) Nano-earl-tring TiNb2O7 as anodes for rechargeable lithium batteries. Adv Energy Mater 3(1):49–53CrossRef
16.
go back to reference Liu X, Wang H, Zhang S, Liu G, Xie H, Ma J (2018) Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries. Electrochim Acta 292:759–768CrossRef Liu X, Wang H, Zhang S, Liu G, Xie H, Ma J (2018) Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries. Electrochim Acta 292:759–768CrossRef
17.
go back to reference Wang T, Shi S, Kong F, Yang G, Qian B, Yin F (2016) The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries. Electrochim Acta 203:206–212CrossRef Wang T, Shi S, Kong F, Yang G, Qian B, Yin F (2016) The role of stable interface in nano-sized FeNbO4 as anode electrode for lithium-ion batteries. Electrochim Acta 203:206–212CrossRef
18.
go back to reference Wang T, Ge T, Shi S, Wu M, Yang G (2018) Synthesis of wolframite FeNbO4 nanorods as a novel anode material for improved lithium storage capability. J Alloy Compd 740:7–15CrossRef Wang T, Ge T, Shi S, Wu M, Yang G (2018) Synthesis of wolframite FeNbO4 nanorods as a novel anode material for improved lithium storage capability. J Alloy Compd 740:7–15CrossRef
19.
go back to reference Kumari TSD, Gandhi RV, Rahul G, Kamalanathan G, Kumar TP, Jeyakumar D, Lakshminarasimhan N (2014) Electrochemical lithium insertion behavior of FeNbO4: structural relations and in situ conversion into FeNb2O6 during carbon coating. Mater Chem Phys 145(3):425–433CrossRef Kumari TSD, Gandhi RV, Rahul G, Kamalanathan G, Kumar TP, Jeyakumar D, Lakshminarasimhan N (2014) Electrochemical lithium insertion behavior of FeNbO4: structural relations and in situ conversion into FeNb2O6 during carbon coating. Mater Chem Phys 145(3):425–433CrossRef
20.
go back to reference Lou X, Fu Q, Xu J, Liu X, Lin C, Han J, Luo Y, Chen Y, Fan X, Li J (2017) GaNb11O29 nanowebs as high-performance anode materials for lithium-ion batteries. ACS Appl Nano Mater 1(1):183–190CrossRef Lou X, Fu Q, Xu J, Liu X, Lin C, Han J, Luo Y, Chen Y, Fan X, Li J (2017) GaNb11O29 nanowebs as high-performance anode materials for lithium-ion batteries. ACS Appl Nano Mater 1(1):183–190CrossRef
21.
go back to reference Wang Z, Zheng R, Li Y, Yu H, Zhang J, Zhang X, Bi W, Shui M, Shu J (2020) Synthesis and characterization of GaNb11O29@C for high-performance lithium-ion battery. Ceram Int 46(5):5913–5919CrossRef Wang Z, Zheng R, Li Y, Yu H, Zhang J, Zhang X, Bi W, Shui M, Shu J (2020) Synthesis and characterization of GaNb11O29@C for high-performance lithium-ion battery. Ceram Int 46(5):5913–5919CrossRef
22.
go back to reference Kong F, Jiao G, Wang J, Tao S, Han Z, Fang Y, Yang G, Zhang L, Qian B (2017) Co-precipitation synthesis and electrochemical properties of CrNbO4 anode materials for lithium-ion batteries. Mater Lett 196:335–338CrossRef Kong F, Jiao G, Wang J, Tao S, Han Z, Fang Y, Yang G, Zhang L, Qian B (2017) Co-precipitation synthesis and electrochemical properties of CrNbO4 anode materials for lithium-ion batteries. Mater Lett 196:335–338CrossRef
23.
go back to reference Li Y, Zheng R, Yu H, Cheng X, Liu T, Peng N, Zhang J, Shui M, Shu J (2019) Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries. ACS Appl Mater Inter 11(25):22429–22438CrossRef Li Y, Zheng R, Yu H, Cheng X, Liu T, Peng N, Zhang J, Shui M, Shu J (2019) Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries. ACS Appl Mater Inter 11(25):22429–22438CrossRef
24.
go back to reference Yang C, Zhang Y, Lv F, Lin C, Liu Y, Wang K, Feng J, Wang X, Chen Y, Li J, Guo S (2017) Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J Mater Chem A 5(42):22297–22304CrossRef Yang C, Zhang Y, Lv F, Lin C, Liu Y, Wang K, Feng J, Wang X, Chen Y, Li J, Guo S (2017) Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J Mater Chem A 5(42):22297–22304CrossRef
25.
go back to reference Yan L, Lan H, Yu H, Qian S, Cheng X, Long N, Zhang R, Shui M, Shu J (2017) Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. J Mater Chem A 5(19):8972–8980CrossRef Yan L, Lan H, Yu H, Qian S, Cheng X, Long N, Zhang R, Shui M, Shu J (2017) Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. J Mater Chem A 5(19):8972–8980CrossRef
26.
go back to reference Yan L, Shu J, Li C, Cheng X, Zhu H, Yu H, Zhang C, Zheng Y, Xie Y, Guo Z (2019) W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater 16:535–544CrossRef Yan L, Shu J, Li C, Cheng X, Zhu H, Yu H, Zhang C, Zheng Y, Xie Y, Guo Z (2019) W3Nb14O44 nanowires: ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater 16:535–544CrossRef
27.
go back to reference Zhu X, Fu Q, Tang L, Lin C, Xu J, Liang G, Li R, Luo L, Chen Y (2018) Mg2Nb34O87 porous microspheres for use in high-energy safe fast-charging and stable lithium-ion batteries. ACS Appl Mater Inter 10(28):23711–23720CrossRef Zhu X, Fu Q, Tang L, Lin C, Xu J, Liang G, Li R, Luo L, Chen Y (2018) Mg2Nb34O87 porous microspheres for use in high-energy safe fast-charging and stable lithium-ion batteries. ACS Appl Mater Inter 10(28):23711–23720CrossRef
28.
go back to reference Cheng X, Qian S, Yu H, Zhu H, Xie Y, Zheng R, Liu T, Shui M, Shu J (2019) BaNb3.6O10 nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage. Energy Storage Mater 16:400–410CrossRef Cheng X, Qian S, Yu H, Zhu H, Xie Y, Zheng R, Liu T, Shui M, Shu J (2019) BaNb3.6O10 nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage. Energy Storage Mater 16:400–410CrossRef
29.
go back to reference Yan T, Ding R, Ying D, Huang Y, Huang Y, Tan C, Sun X, Gao P, Liu E (2019) An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries. J Mater Chem A 7(40):22884–22888CrossRef Yan T, Ding R, Ying D, Huang Y, Huang Y, Tan C, Sun X, Gao P, Liu E (2019) An intercalation pseudocapacitance-driven perovskite NaNbO3 anode with superior kinetics and stability for advanced lithium-based dual-ion batteries. J Mater Chem A 7(40):22884–22888CrossRef
30.
go back to reference Park S, Sung J, Chae S, Hong J, Lee T, Lee Y, Cha H, Kim SY, Cho J (2020) Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14(9):11548–11557CrossRef Park S, Sung J, Chae S, Hong J, Lee T, Lee Y, Cha H, Kim SY, Cho J (2020) Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 14(9):11548–11557CrossRef
31.
go back to reference Li H, Ren Y, Yang P, Jian Z, Wang W, Xing Y, Zhang S (2019) Morphology and size controlled synthesis of the hierarchical structured Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium ion batteries. Electrochim Acta 297:406–416CrossRef Li H, Ren Y, Yang P, Jian Z, Wang W, Xing Y, Zhang S (2019) Morphology and size controlled synthesis of the hierarchical structured Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials for lithium ion batteries. Electrochim Acta 297:406–416CrossRef
32.
go back to reference Wang C, Higgins D, Wang F, Li D, Liu R, Xia G, Li N, Li Q, Xu H, Wu G (2014) Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries. Nano Energy 9:334–344CrossRef Wang C, Higgins D, Wang F, Li D, Liu R, Xia G, Li N, Li Q, Xu H, Wu G (2014) Controlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries. Nano Energy 9:334–344CrossRef
33.
go back to reference Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12(6):518–522CrossRef Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12(6):518–522CrossRef
34.
go back to reference Liu H, Liang G, Gao C, Bi S, Chen Q, Xie Y, Fan S, Cao L, Pang WK, Guo Z (2019) Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy 66:104100CrossRef Liu H, Liang G, Gao C, Bi S, Chen Q, Xie Y, Fan S, Cao L, Pang WK, Guo Z (2019) Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy 66:104100CrossRef
35.
go back to reference Zhang K, Li Y, Wang Y, Zhao J, Chen X, Dai Y, Yao Y (2020) Enhanced electrochemical properties of iron oxalate with more stable Li+ ions diffusion channels by controlling polymorphic structure. Chem Eng J 384:123281CrossRef Zhang K, Li Y, Wang Y, Zhao J, Chen X, Dai Y, Yao Y (2020) Enhanced electrochemical properties of iron oxalate with more stable Li+ ions diffusion channels by controlling polymorphic structure. Chem Eng J 384:123281CrossRef
36.
go back to reference Guo Y, Zhang L, Wang J, Liang J, Xi L (2019) Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochim Acta 322:134763CrossRef Guo Y, Zhang L, Wang J, Liang J, Xi L (2019) Facile method for adjustable preparation of nano-Fe7S8 supported by carbon as the anode for enhanced lithium/sodium storage properties in Li/Na-ion batteries. Electrochim Acta 322:134763CrossRef
37.
go back to reference Li J, Yao W, Zhang F, Rao X, Zhang Q, Zhong S, Cheng H, Yan Z (2021) Porous SnO2 microsphere and its carbon nanotube hybrids: Controllable preparation, structures and electrochemical performances as anode materials. Electrochim Acta 388:138582CrossRef Li J, Yao W, Zhang F, Rao X, Zhang Q, Zhong S, Cheng H, Yan Z (2021) Porous SnO2 microsphere and its carbon nanotube hybrids: Controllable preparation, structures and electrochemical performances as anode materials. Electrochim Acta 388:138582CrossRef
38.
go back to reference Song K, Seo DH, Jo MR, Kim YI, Kang K, Kang YM (2014) Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li ion battery. J Phys Chem Lett 5(8):1368–1373CrossRef Song K, Seo DH, Jo MR, Kim YI, Kang K, Kang YM (2014) Tailored oxygen framework of Li4Ti5O12 nanorods for high-power Li ion battery. J Phys Chem Lett 5(8):1368–1373CrossRef
39.
go back to reference Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74(9):094105CrossRef Kang K, Ceder G (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B 74(9):094105CrossRef
40.
go back to reference Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763):977–980CrossRef Kang K, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763):977–980CrossRef
41.
go back to reference Lu X, Wu G, Xiong Q, Qin H, Ji Z, Pan H (2017) Laser in-situ synthesis of SnO2/N-doped graphene nanocomposite with enhanced lithium storage properties based on both alloying and insertion reactions. Appl Surf Sci 422:645–653CrossRef Lu X, Wu G, Xiong Q, Qin H, Ji Z, Pan H (2017) Laser in-situ synthesis of SnO2/N-doped graphene nanocomposite with enhanced lithium storage properties based on both alloying and insertion reactions. Appl Surf Sci 422:645–653CrossRef
42.
go back to reference Mao W, Liu K, Guo G, Liu G, Bao K, Guo J, Hu M, Wang W, Li B, Zhang K, Qian Y (2017) Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim Acta 253:396–402CrossRef Mao W, Liu K, Guo G, Liu G, Bao K, Guo J, Hu M, Wang W, Li B, Zhang K, Qian Y (2017) Preparation and electrochemical performance of Ti2Nb10O29/Ag composite as anode materials for lithium ion batteries. Electrochim Acta 253:396–402CrossRef
43.
go back to reference Hu R, Chen D, Waller G, Ouyang Y, Chen Y, Zhao B, Rainwater B, Yang C, Zhu M, Liu M (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energ Environ Sci 9(2):595–603CrossRef Hu R, Chen D, Waller G, Ouyang Y, Chen Y, Zhao B, Rainwater B, Yang C, Zhu M, Liu M (2016) Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energ Environ Sci 9(2):595–603CrossRef
44.
go back to reference Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci 7(5):1597–1614CrossRef Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci 7(5):1597–1614CrossRef
45.
go back to reference Liu H, Hu R, Sun W, Zeng M, Liu J, Yang L, Zhu M (2013) Sn@SnOx/C nanocomposites prepared by oxygen plasma-assisted milling as cyclic durable anodes for lithium ion batteries. J Power Sources 242:14–121CrossRef Liu H, Hu R, Sun W, Zeng M, Liu J, Yang L, Zhu M (2013) Sn@SnOx/C nanocomposites prepared by oxygen plasma-assisted milling as cyclic durable anodes for lithium ion batteries. J Power Sources 242:14–121CrossRef
46.
go back to reference Yi T, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R (2012) High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries. J Power Sources 214:220–226CrossRef Yi T, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R (2012) High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries. J Power Sources 214:220–226CrossRef
47.
go back to reference Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV (2010) Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim Acta 55(8):2939–2950CrossRef Churikov AV, Ivanishchev AV, Ivanishcheva IA, Sycheva VO, Khasanova NR, Antipov EV (2010) Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim Acta 55(8):2939–2950CrossRef
48.
go back to reference Nakayama M, Ikuta H, Uchimoto Y, Wakihara M (2003) Study on the ac impedance spectroscopy for the Li insertion reaction of LixLa1/3NbO3 at the electrode-electrolyte interface. J Phys Chem B 107(38):10603–10607CrossRef Nakayama M, Ikuta H, Uchimoto Y, Wakihara M (2003) Study on the ac impedance spectroscopy for the Li insertion reaction of LixLa1/3NbO3 at the electrode-electrolyte interface. J Phys Chem B 107(38):10603–10607CrossRef
49.
go back to reference Cheng M, Xia J, Hu J, Liu Q, Wei T, Ling Y, Li W, Liu B (2021) Nitrogen and oxygen codoped carbon anode fabricated facilely from polyaniline coated cellulose nanocrystals for high-performance Li-ion batteries. ACS Appl Energy Mater 4(9):9902–9912CrossRef Cheng M, Xia J, Hu J, Liu Q, Wei T, Ling Y, Li W, Liu B (2021) Nitrogen and oxygen codoped carbon anode fabricated facilely from polyaniline coated cellulose nanocrystals for high-performance Li-ion batteries. ACS Appl Energy Mater 4(9):9902–9912CrossRef
Metadata
Title
Facile construction of single-crystalline sodium niobate anode materials: insight into the relationship of the morphology and excellent performance for lithium-ion batteries
Authors
Zhengyu Du
Qianqian Liu
Miao Cheng
Jing Hu
Tao Wei
Wanfei Li
Yun Ling
Xufei Hu
Bo Liu
Publication date
07-03-2022
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2022
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07048-4

Other articles of this Issue 10/2022

Journal of Materials Science 10/2022 Go to the issue

Premium Partners