Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

Faster AutoAugment: Learning Augmentation Strategies Using Backpropagation

Authors : Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, Hideki Nakayama

Published in: Computer Vision – ECCV 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data augmentation methods are indispensable heuristics to boost the performance of deep neural networks, especially in image recognition tasks. Recently, several studies have shown that augmentation strategies found by search algorithms outperform hand-made strategies. Such methods employ black-box search algorithms over image transformations with continuous or discrete parameters and require a long time to obtain better strategies. In this paper, we propose a differentiable policy search pipeline for data augmentation, which is much faster than previous methods. We introduce approximate gradients for several transformation operations with discrete parameters as well as a differentiable mechanism for selecting operations. As the objective of training, we minimize the distance between the distributions of augmented and original data, which can be differentiated. We show that our method, Faster AutoAugment, achieves significantly faster searching than prior methods without a performance drop.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that [18] and our study estimated the GPU hours with an NVIDIA V100 GPU while [5] did with an NVIDIA P100 GPU.
 
4
[5] reported better baseline and Cutout performance than us (18.8% and 16.5% respectively), but we could not reproduce the results in [5].
 
Literature
1.
go back to reference Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. In: ICLR (2018) Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. In: ICLR (2018)
2.
go back to reference Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: ICML (2017) Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. In: ICML (2017)
3.
go back to reference Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv (2013) Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv (2013)
4.
go back to reference Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: MixMatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019) Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.: MixMatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)
5.
go back to reference Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. In: CVPR (2019) Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. In: CVPR (2019)
6.
go back to reference DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv (2017) DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv (2017)
7.
go back to reference Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017) Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)
8.
go back to reference Gastaldi, X.: Shake-shake regularization of 3-branch residual networks. In: ICLR (2017) Gastaldi, X.: Shake-shake regularization of 3-branch residual networks. In: ICLR (2017)
9.
go back to reference Goodfellow, I., et al.: Generative adversarial networks. In: NIPS (2014) Goodfellow, I., et al.: Generative adversarial networks. In: NIPS (2014)
10.
go back to reference Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: NIPS (2017) Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: NIPS (2017)
11.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
12.
go back to reference Ho, D., Liang, E., Stoica, I., Abbeel, P., Chen, X.: Population based augmentation: efficient learning of augmentation policy schedules. In: ICML (2019) Ho, D., Liang, E., Stoica, I., Abbeel, P., Chen, X.: Population based augmentation: efficient learning of augmentation policy schedules. In: ICML (2019)
13.
go back to reference Inoue, H.: Data augmentation by pairing samples for images classification. arXiv (2018) Inoue, H.: Data augmentation by pairing samples for images classification. arXiv (2018)
14.
go back to reference Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017) Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)
15.
go back to reference Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR (2015) Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR (2015)
16.
go back to reference Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009) Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)
17.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
18.
go back to reference Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: NeurIPS (2019) Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: NeurIPS (2019)
19.
go back to reference Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2018) Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2018)
20.
go back to reference Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter optimization through reversible learning. In: Bach, F., Blei, D. (eds.) ICML (2015) Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based hyperparameter optimization through reversible learning. In: Bach, F., Blei, D. (eds.) ICML (2015)
21.
go back to reference Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011) Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)
22.
go back to reference van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NIPS (2017) van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: NIPS (2017)
23.
go back to reference Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019) Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)
24.
go back to reference Ratner, A.J., Ehrenberg, H.R., Hussain, Z., Dunnmon, J., Ré, C.: Learning to compose domain-specific transformations for data augmentation. In: NIPS (2017) Ratner, A.J., Ehrenberg, H.R., Hussain, Z., Dunnmon, J., Ré, C.: Learning to compose domain-specific transformations for data augmentation. In: NIPS (2017)
25.
go back to reference Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI (2019) Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI (2019)
26.
go back to reference Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: an open source differentiable computer vision library for PyTorch. In: WACV (2019) Riba, E., Mishkin, D., Ponsa, D., Rublee, E., Bradski, G.: Kornia: an open source differentiable computer vision library for PyTorch. In: WACV (2019)
28.
go back to reference Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017) Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R.: Learning from simulated and unsupervised images through adversarial training. In: CVPR (2017)
29.
go back to reference Sixt, L., Wild, B., Landgraf, T.: RenderGAN: generating realistic labeled data. In: Frontiers Robotics AI (2018) Sixt, L., Wild, B., Landgraf, T.: RenderGAN: generating realistic labeled data. In: Frontiers Robotics AI (2018)
30.
go back to reference Tokozume, Y., Ushiku, Y., Harada, T.: Between-class Learning for image classification. In: CVPR (2018) Tokozume, Y., Ushiku, Y., Harada, T.: Between-class Learning for image classification. In: CVPR (2018)
31.
go back to reference Tran, T., Pham, T., Carneiro, G., Palmer, L., Reid, I.: A bayesian data augmentation approach for learning deep models. In: NIPS (2017) Tran, T., Pham, T., Carneiro, G., Palmer, L., Reid, I.: A bayesian data augmentation approach for learning deep models. In: NIPS (2017)
32.
go back to reference Volpi, R., Murino, V.: Addressing model vulnerability to distributional shifts over image transformation sets. In: ICCV (2019) Volpi, R., Murino, V.: Addressing model vulnerability to distributional shifts over image transformation sets. In: ICCV (2019)
33.
go back to reference Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. arXiv (2019) Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. arXiv (2019)
34.
go back to reference Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMIx: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019) Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMIx: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)
35.
go back to reference Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016) Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)
36.
go back to reference Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018) Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)
37.
go back to reference Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv (2017) Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv (2017)
38.
go back to reference Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017) Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR (2017)
Metadata
Title
Faster AutoAugment: Learning Augmentation Strategies Using Backpropagation
Authors
Ryuichiro Hataya
Jan Zdenek
Kazuki Yoshizoe
Hideki Nakayama
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-58595-2_1

Premium Partner