Skip to main content
Top

2024 | OriginalPaper | Chapter

5. Fatigue and Environment-Assisted Testing

Authors : Emmanuel Gdoutos, Maria Konsta-Gdoutos

Published in: Mechanical Testing of Materials

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fatigue is the process of damage and failure of materials and structures due to cycling loading. It was demonstrated that under repeated loading materials fail at stresses well below the ultimate strength, and microscopic damage accumulates until cracks or other forms of macroscopic damage develop. Failure due to fatigue loading is called “fatigue failure. The number of loading cycles leading to failure of structural or machine components is called fatigue life. The main objective of fatigue analysis is to determine the fatigue life for a repeated fluctuating load of constant or variable amplitude. In this chapter we will consider two major approaches for the study of fatigue failure. The stress-based approach which is based on nominal stresses and does not account on the mechanisms of fatigue failure, and the fracture mechanics approach which considers the micro and macromechanisms of fatigue failure and uses the principles of fracture mechanics for initiation and propagation of cracks. This approach provides a better understanding of fatigue failure by analyzing the initiation, propagation and instability processes of fatigue cracks. For both approaches we present the mechanical tests performed on specimens subjected to cyclic loading. The objective of the tests is to generate fatigue life and crack growth data and demonstrate the safety of a material or structure. The chapter concludes with a study of the environment-assisted fracture.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Barsom JM (1973) Fatigue-crack growth under variable-amplitude loading in ASTM A514-B steel. Progress in flaw growth and fracture toughness testing, ASTM STP 536. American Society for Testing and Materials, Philadelphia, pp 147–167CrossRef Barsom JM (1973) Fatigue-crack growth under variable-amplitude loading in ASTM A514-B steel. Progress in flaw growth and fracture toughness testing, ASTM STP 536. American Society for Testing and Materials, Philadelphia, pp 147–167CrossRef
2.
go back to reference Bathias C, Pineau A (2011) Fatigue of materials and structures: application to damage and design. Wiley Bathias C, Pineau A (2011) Fatigue of materials and structures: application to damage and design. Wiley
3.
go back to reference Beevers DJ (1980) The Measurement of crack length and shape during fracture and fatigue. Chamelon Press Beevers DJ (1980) The Measurement of crack length and shape during fracture and fatigue. Chamelon Press
4.
go back to reference Beevers CJ (ed) (1982) Advances in crack length measurement. Chameleon Press Beevers CJ (ed) (1982) Advances in crack length measurement. Chameleon Press
5.
go back to reference Cavaliere P (2021) Fatigue and fracture of nanostructured materials. SpringerCrossRef Cavaliere P (2021) Fatigue and fracture of nanostructured materials. SpringerCrossRef
6.
go back to reference Cullen WH, Landgraf RW, Kaisand LR, Underwood JH (eds) (1985) Automated test methods for fracture and fatigue crack growth. ASTM STP 877 Cullen WH, Landgraf RW, Kaisand LR, Underwood JH (eds) (1985) Automated test methods for fracture and fatigue crack growth. ASTM STP 877
7.
go back to reference De Koning AU (1981) A simple crack closure model for prediction of fatigue crack growth rates under variable-amplitude loading. Fatigue mechanics-thirteenth conference. ASTM STP American Society for Testing and Materials, Philadelphia, pp 63–85 De Koning AU (1981) A simple crack closure model for prediction of fatigue crack growth rates under variable-amplitude loading. Fatigue mechanics-thirteenth conference. ASTM STP American Society for Testing and Materials, Philadelphia, pp 63–85
8.
go back to reference Donahue RJ, Clark HM, Atanmo P, Kumble R, McEvily AJ (1972) Crack opening displacement and the rate of fatigue crack growth. Int J Fract Mech 8:209–219CrossRef Donahue RJ, Clark HM, Atanmo P, Kumble R, McEvily AJ (1972) Crack opening displacement and the rate of fatigue crack growth. Int J Fract Mech 8:209–219CrossRef
9.
go back to reference Dowling NE, Begley JA (1976) Fatigue crack growth during gross plasticity and the J integral. Mechanics of crack growth, ASTM STP 590. American Society for Testing and Materials, Philadelphia, pp 82–103CrossRef Dowling NE, Begley JA (1976) Fatigue crack growth during gross plasticity and the J integral. Mechanics of crack growth, ASTM STP 590. American Society for Testing and Materials, Philadelphia, pp 82–103CrossRef
10.
go back to reference Dowling NE (1977) Crack growth during low-cycle fatigue of smooth axial specimens. Cyclic stress-strain and plastic deformation aspects of fatigue crack growth, ASTM STP 637. American Society for Testing and Materials, Philadelphia, pp 97–121CrossRef Dowling NE (1977) Crack growth during low-cycle fatigue of smooth axial specimens. Cyclic stress-strain and plastic deformation aspects of fatigue crack growth, ASTM STP 637. American Society for Testing and Materials, Philadelphia, pp 97–121CrossRef
11.
go back to reference Dowling NE, Kampe SL, Kral MV (2019) Mechanical behavior of materials, Global Edition 5th edn. Pearson Dowling NE, Kampe SL, Kral MV (2019) Mechanical behavior of materials, Global Edition 5th edn. Pearson
12.
go back to reference Elber W (1970) Fatigue crack closure under cyclic tension. Eng Fract Mech 2:37–45CrossRef Elber W (1970) Fatigue crack closure under cyclic tension. Eng Fract Mech 2:37–45CrossRef
13.
go back to reference Elber W (1976) Equivalent constant-amplitude concept for crack growth under spectrum loading. Fatigue crack growth under spectrum loads, ASTM STP 595. American Society for Testing and Materials, Philadelphia, pp 236–250CrossRef Elber W (1976) Equivalent constant-amplitude concept for crack growth under spectrum loading. Fatigue crack growth under spectrum loads, ASTM STP 595. American Society for Testing and Materials, Philadelphia, pp 236–250CrossRef
14.
go back to reference Erdogan F, Ratwani M (1970) Fatigue and fracture of cylindrical shells containing a circumferential crack. Int J Fract Mech 6:379–392CrossRef Erdogan F, Ratwani M (1970) Fatigue and fracture of cylindrical shells containing a circumferential crack. Int J Fract Mech 6:379–392CrossRef
15.
go back to reference Fatigue Test Methodology (1981) AGARD Lecture Series No. 118 Fatigue Test Methodology (1981) AGARD Lecture Series No. 118
16.
go back to reference Forman RG, Kearney VE, Engle RM (1967) Numerical analysis of crack propagation in cyclic-loaded structures. J Basic Eng Trans ASME 89:459–464CrossRef Forman RG, Kearney VE, Engle RM (1967) Numerical analysis of crack propagation in cyclic-loaded structures. J Basic Eng Trans ASME 89:459–464CrossRef
17.
go back to reference Gdoutos EE (2022) Fracture mechanics, 3rd edn. Springer, Heidelberg Gdoutos EE (2022) Fracture mechanics, 3rd edn. Springer, Heidelberg
18.
go back to reference Hans-Jürgen C (ed) (2018) Fatigue of materials at very high numbers of loading cycles: experimental techniques, mechanisms, modeling and fatigue life assessment. Springer Spektrum Hans-Jürgen C (ed) (2018) Fatigue of materials at very high numbers of loading cycles: experimental techniques, mechanisms, modeling and fatigue life assessment. Springer Spektrum
19.
20.
go back to reference Heinrich G, Kipscholl R, Stoček R (eds) (2021) Fatigue crack growth in rubber materials. Springer, Heidelberg Heinrich G, Kipscholl R, Stoček R (eds) (2021) Fatigue crack growth in rubber materials. Springer, Heidelberg
21.
go back to reference Hudak SJ, Bucci RJ (eds) (1981) Fatigue crack growth measurement and data analysis. ASTM STP 738 Hudak SJ, Bucci RJ (eds) (1981) Fatigue crack growth measurement and data analysis. ASTM STP 738
22.
go back to reference Klesnil M, Lucas P (1972) Effect of stress cycle asymmetry on fatigue crack growth. Mater Sci Eng 9:231–240CrossRef Klesnil M, Lucas P (1972) Effect of stress cycle asymmetry on fatigue crack growth. Mater Sci Eng 9:231–240CrossRef
23.
go back to reference Lesiuk G, Duda S, Correia JAFO, Jesus AMP (eds) (2022) Fatigue and fracture of materials and structures: contributions from ICMFM XX and KKMP2021. Springer, Heidelberg Lesiuk G, Duda S, Correia JAFO, Jesus AMP (eds) (2022) Fatigue and fracture of materials and structures: contributions from ICMFM XX and KKMP2021. Springer, Heidelberg
24.
go back to reference Manson SS (2005) Fatigue and durability of structural materials. ASM International Manson SS (2005) Fatigue and durability of structural materials. ASM International
25.
go back to reference Marsh KJ, Smith RA, Ritchie RO (eds) (1991) Fatigue crack measurement: techniques and applications. Engineering Materials Advisory Services (EMAS) Marsh KJ, Smith RA, Ritchie RO (eds) (1991) Fatigue crack measurement: techniques and applications. Engineering Materials Advisory Services (EMAS)
26.
go back to reference Marsh KJ (ed) (1988) Full-scale fatigue testing of components and structures. Butterworth Marsh KJ (ed) (1988) Full-scale fatigue testing of components and structures. Butterworth
27.
go back to reference Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng Trans ASME 85:528–534CrossRef Paris P, Erdogan F (1963) A critical analysis of crack propagation laws. J Basic Eng Trans ASME 85:528–534CrossRef
28.
go back to reference Schijve J (1981) Some formulas for the crack opening stress level. Eng Fract Mech 14:461–465CrossRef Schijve J (1981) Some formulas for the crack opening stress level. Eng Fract Mech 14:461–465CrossRef
29.
go back to reference Schijve J (2009) Fatigue of structures and materials, 2nd edn. Springer, HeidelbergCrossRef Schijve J (2009) Fatigue of structures and materials, 2nd edn. Springer, HeidelbergCrossRef
30.
go back to reference Skibicki D (2014) Phenomena and computational models of non-proportional fatigue of materials. Springer, HeidelbergCrossRef Skibicki D (2014) Phenomena and computational models of non-proportional fatigue of materials. Springer, HeidelbergCrossRef
31.
go back to reference Stephens RI, Fatemi A, Stephens RR, Fucks HO (2001) Metal fatigue in engineering, 2nd edn. Wiley, Hoboken Stephens RI, Fatemi A, Stephens RR, Fucks HO (2001) Metal fatigue in engineering, 2nd edn. Wiley, Hoboken
32.
33.
go back to reference Swanson SR (ed) (1974) Handbook of fatigue testing. ASTM STP 566, American Society for Testing and Materials, Philadelphia Swanson SR (ed) (1974) Handbook of fatigue testing. ASTM STP 566, American Society for Testing and Materials, Philadelphia
34.
go back to reference Wheeler OE (1972) Spectrum loading and crack growth. J Basic Eng Trans ASME 94:181–186CrossRef Wheeler OE (1972) Spectrum loading and crack growth. J Basic Eng Trans ASME 94:181–186CrossRef
Metadata
Title
Fatigue and Environment-Assisted Testing
Authors
Emmanuel Gdoutos
Maria Konsta-Gdoutos
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-45990-0_5

Premium Partners