Skip to main content
Top
Published in: Steel in Translation 10/2019

01-10-2019

Fatigue Resistance Changes of Structural Steels at Different Load Spectra

Authors: V. V. Myl’nikov, D. I. Shetulov, O. B. Kondrashkin, E. A. Chernyshov, A. I. Pronin

Published in: Steel in Translation | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fatigue strength of widely used engineering structural steels was studied at various loading frequencies according to the cantilever bending scheme of rotating cylindrical samples. The inclination angle tangent of the fatigue curve to the axis of durability was taken as the fatigue resistance index. It has been established that 40 and 45 grade steels (UNS G10400/G10420 and G1044/G1045) belong to the group of materials in which a decrease in the loading frequency leads to cyclic softening and a decrease in the fatigue resistance, which is numerically expressed by the increase in the slope of the fatigue curve. Test samples made of 40Cr grade steel (UNS G51400) have shown that the increase in the frequency of loading cycles leads to a noticeable decrease in the fatigue curve slope parameter, i.e., leading to an increase in the fatigue resistance. The decrease in the fatigue resistance parameter is associated with the enhanced hardening of the material of the samples’ surface layers, which reduces the fatigue damage to the surface itself. The tangent dependence of the fatigue curve slope is shown on the surface damage rate when the loading cycles change frequency. Regardless of the frequency, the damage rate of the material’s surface layers increases along the fatigue curve slope. For each of these groups, mathematical relations have been defined. A correlation coefficient that shows the degree of convergence of experimental results and the constructed fatigue curve is adopted as a criterion of the cyclic behavior stability of steels. An increase in the behavior stability of 40Cr steel is observed with the increasing cyclic deformation rate. 45 grade steel tests have shown that a decrease in the cyclic strength with an increasing loading frequency does not affect the material’s fatigue stability. Experimental results showed increased dispersion for 40 grade steel at a low loading frequency despite high values of the cyclic strength at a given loading frequency. Based on the experiments, the behavior dynamics of real machine parts and structures subjected to cyclic loads within the studied loading spectrum has been established.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Terent’ev, V.F. and Korableva, S.A., Ustalost’ metallov (Metal Fatigue), Moscow: Nauka, 2015. Terent’ev, V.F. and Korableva, S.A., Ustalost’ metallov (Metal Fatigue), Moscow: Nauka, 2015.
2.
go back to reference Suresh, S., Fatigue of Metals, Cambridge: Cambridge Univ. Press, 2006. Suresh, S., Fatigue of Metals, Cambridge: Cambridge Univ. Press, 2006.
3.
go back to reference Gromov, V.E., Ivanov, Yu.F., Vorobiev, S.V., and Konovalov, S.V., Fatigue of Steels Modified by High Intensity Electron Beams, Cambridge, 2015. Gromov, V.E., Ivanov, Yu.F., Vorobiev, S.V., and Konovalov, S.V., Fatigue of Steels Modified by High Intensity Electron Beams, Cambridge, 2015.
4.
go back to reference Honeycombe, R.W.K., The Plastic Deformation of Metals, London: Edward Arnold, 1984. Honeycombe, R.W.K., The Plastic Deformation of Metals, London: Edward Arnold, 1984.
5.
go back to reference Kazymyrovych, V., Very High Cycle Fatigue of Engineering Materials: A Literature Review, Karlstad: Karlstad Univ., 2009. Kazymyrovych, V., Very High Cycle Fatigue of Engineering Materials: A Literature Review, Karlstad: Karlstad Univ., 2009.
6.
go back to reference Panin, V.E., Fizicheskaya mezomekhanika materialov (Physical Mesomechanics of Materials), Psakh’e, S.G., Ed., Tomsk: Tomsk. Gos. Univ., 2015, vol. 1. Panin, V.E., Fizicheskaya mezomekhanika materialov (Physical Mesomechanics of Materials), Psakh’e, S.G., Ed., Tomsk: Tomsk. Gos. Univ., 2015, vol. 1.
7.
go back to reference Vladimirov, V.I., Fizicheskaya priroda razrusheniya metallov (Physical Nature of Metal Destruction), Moscow: Metallurgiya, 1984. Vladimirov, V.I., Fizicheskaya priroda razrusheniya metallov (Physical Nature of Metal Destruction), Moscow: Metallurgiya, 1984.
8.
go back to reference Shanyavskii, A.A., Bezopasnoe ustalostnoe razrushenie elementov aviakonstruktsii. Sinergetika v inzhenernykh prilozheniyakh (Safe Fatigue Destruction of Aircraft Components: Synergy in Engineering Applications), Ufa: Monografiya, 2003. Shanyavskii, A.A., Bezopasnoe ustalostnoe razrushenie elementov aviakonstruktsii. Sinergetika v inzhenernykh prilozheniyakh (Safe Fatigue Destruction of Aircraft Components: Synergy in Engineering Applications), Ufa: Monografiya, 2003.
9.
go back to reference McEvily, A.J., Metal Failures: Mechanisms, Analysis, Prevention, New York: Wiley, 2002. McEvily, A.J., Metal Failures: Mechanisms, Analysis, Prevention, New York: Wiley, 2002.
10.
go back to reference Schijve, J., Fatigue of structures and materials in the 20th century and the state of the art, Int. J. Fatigue, 2003, vol. 25, pp. 679–702.CrossRef Schijve, J., Fatigue of structures and materials in the 20th century and the state of the art, Int. J. Fatigue, 2003, vol. 25, pp. 679–702.CrossRef
11.
go back to reference Shkol’nik, L.M., Metodika ustalostnykh ispytanii. Spravochnik (Fatigue Testing Technique: Handbook), Moscow: Metallurgiya, 1978. Shkol’nik, L.M., Metodika ustalostnykh ispytanii. Spravochnik (Fatigue Testing Technique: Handbook), Moscow: Metallurgiya, 1978.
12.
go back to reference Troshchenko, V.T. and Sosnovskii, L.A., Soprotivlenie ustalosti metallov i splavov (Fatigue Resistance of Metals and Alloys), Kiev: Naukova Dumka, 1987. Troshchenko, V.T. and Sosnovskii, L.A., Soprotivlenie ustalosti metallov i splavov (Fatigue Resistance of Metals and Alloys), Kiev: Naukova Dumka, 1987.
13.
go back to reference Ivanova, V.S. and Shanyavskii, A.A., Kolichestvennaya fraktografiya. Ustalostnoe razrushenie (Quantitative Fractography. Fatigue Fracture), Moscow: Metallurgiya, 1988. Ivanova, V.S. and Shanyavskii, A.A., Kolichestvennaya fraktografiya. Ustalostnoe razrushenie (Quantitative Fractography. Fatigue Fracture), Moscow: Metallurgiya, 1988.
14.
go back to reference Pachurin, G.V., Gushchin, A.N., Pachurin, K.G., and Pimenov, G.V., Tekhnologiya kompleksnogo issledovaniya razrusheniya deformirovannykh metallov i splavov v raznykh usloviyakh nagruzheniya. Uchebnoe posobie (Comprehensive Study of Destruction of Deformed Metals and Alloys under Different Loading Conditions: Manual), Nizhny Novgorod: Nizhegorodsk. Gos. Univ., 2005. Pachurin, G.V., Gushchin, A.N., Pachurin, K.G., and Pimenov, G.V., Tekhnologiya kompleksnogo issledovaniya razrusheniya deformirovannykh metallov i splavov v raznykh usloviyakh nagruzheniya. Uchebnoe posobie (Comprehensive Study of Destruction of Deformed Metals and Alloys under Different Loading Conditions: Manual), Nizhny Novgorod: Nizhegorodsk. Gos. Univ., 2005.
15.
go back to reference Huang, H.-M., Chang, W.-J., Teng, N.-C., Lin, H.-L., and Hsieh, S.-C., Structural analysis of cyclic-loaded nickel-titanium rotary instruments by using resonance frequency as a parameter, J. Endodontics, 2011, vol. 37, no. 7, pp. 993–996.CrossRef Huang, H.-M., Chang, W.-J., Teng, N.-C., Lin, H.-L., and Hsieh, S.-C., Structural analysis of cyclic-loaded nickel-titanium rotary instruments by using resonance frequency as a parameter, J. Endodontics, 2011, vol. 37, no. 7, pp. 993–996.CrossRef
16.
go back to reference Kocańda, S., Zmęczeniowe Pękanie Metali, Warszawa: WNT, 1985. Kocańda, S., Zmęczeniowe Pękanie Metali, Warszawa: WNT, 1985.
17.
go back to reference Weiss, T., ASTM Bull., 1949, no. 2, p. 188, p. 31. Weiss, T., ASTM Bull., 1949, no. 2, p. 188, p. 31.
18.
go back to reference Proc. Int. Conf. VHCF-5, June 28–30, 2011, Berlin, Berger, C. and Christ, H.-J., Eds., Berlin: DVM, 2011. Proc. Int. Conf. VHCF-5, June 28–30, 2011, Berlin, Berger, C. and Christ, H.-J., Eds., Berlin: DVM, 2011.
19.
go back to reference Sulima, A.M. and Evstigneev, M.I., Kachestvo poverkhnostnogo sloya i ustalostnaya prochnost’ detalei iz zharoprochnykh i titanovykh splavov (Surface Layer Quality and Fatigue Strength of Parts from Heat-Resistant and Titanium Alloys), Moscow: Mashinostroenie, 1974. Sulima, A.M. and Evstigneev, M.I., Kachestvo poverkhnostnogo sloya i ustalostnaya prochnost’ detalei iz zharoprochnykh i titanovykh splavov (Surface Layer Quality and Fatigue Strength of Parts from Heat-Resistant and Titanium Alloys), Moscow: Mashinostroenie, 1974.
20.
go back to reference Yakovleva, T.Yu. and Matokhnyuk, L.E., Prediction of fatigue characteristics of metals at different loading frequencies, Strength Mater., 2004, vol. 36, no. 4, pp. 442–448.CrossRef Yakovleva, T.Yu. and Matokhnyuk, L.E., Prediction of fatigue characteristics of metals at different loading frequencies, Strength Mater., 2004, vol. 36, no. 4, pp. 442–448.CrossRef
21.
go back to reference Yasnii, P.V., Marushchak, P.O., Panin, S.V., Lyubutin, P.S., Baran, D.Ya., and Ovechkin, B.B., The stages of material deformation and growth kinetics of fatigue crack in 25Kh1M1F steel at low loading frequencies, Fiz. Mezomekh., 2012, vol. 15, no. 2, pp. 97-107. Yasnii, P.V., Marushchak, P.O., Panin, S.V., Lyubutin, P.S., Baran, D.Ya., and Ovechkin, B.B., The stages of material deformation and growth kinetics of fatigue crack in 25Kh1M1F steel at low loading frequencies, Fiz. Mezomekh., 2012, vol. 15, no. 2, pp. 97-107.
22.
go back to reference Konovalov, S., Aksenova, K., Gromov, V., Ivanov, Yu., and Semina, O., The influence of electron beam treatment on alloy structure destroyed at high-cycle fatigue, Key Eng. Mater., 2016, vols. 675–676, pp. 655–659.CrossRef Konovalov, S., Aksenova, K., Gromov, V., Ivanov, Yu., and Semina, O., The influence of electron beam treatment on alloy structure destroyed at high-cycle fatigue, Key Eng. Mater., 2016, vols. 675–676, pp. 655–659.CrossRef
23.
go back to reference Mughrabi, H. and Christ, H.-J., Cyclic deformation and fatigue of selected ferritic and austenitic steels; specific aspects, ISIJ Int., 1997, vol. 37, no. 12, pp. 1154–1169.CrossRef Mughrabi, H. and Christ, H.-J., Cyclic deformation and fatigue of selected ferritic and austenitic steels; specific aspects, ISIJ Int., 1997, vol. 37, no. 12, pp. 1154–1169.CrossRef
24.
go back to reference Musuva, J.K. and Radon, J.C., The effect of stress ratio and frequency on fatigue crack growth, Fatigue Eng. Mater. Struct., 1979, vol. 1, pp. 457–470.CrossRef Musuva, J.K. and Radon, J.C., The effect of stress ratio and frequency on fatigue crack growth, Fatigue Eng. Mater. Struct., 1979, vol. 1, pp. 457–470.CrossRef
25.
go back to reference Marines, I., Bin, X., and Bathias, C., An understanding of very high cycle fatigue of metals, Int. J. Fatigue, 2003, vol. 25, nos. 9–11. pp. 1101–1107.CrossRef Marines, I., Bin, X., and Bathias, C., An understanding of very high cycle fatigue of metals, Int. J. Fatigue, 2003, vol. 25, nos. 9–11. pp. 1101–1107.CrossRef
26.
go back to reference Mylnikov, V.V., Shetulov, D.I., and Chernyshov, E.A., Variation in factors of fatigue resistance for some pure metals as a function of the frequency of loading cycles, Russ. J. Non-Ferrous Metall., 2010, vol. 51, no. 3, pp. 237–242.CrossRef Mylnikov, V.V., Shetulov, D.I., and Chernyshov, E.A., Variation in factors of fatigue resistance for some pure metals as a function of the frequency of loading cycles, Russ. J. Non-Ferrous Metall., 2010, vol. 51, no. 3, pp. 237–242.CrossRef
27.
go back to reference Shetulov, D.I., Relation of resistance to cyclic loading with metals surface damage, Izv. Akad. Nauk SSSR, Met., 1991, no. 5, p. 160. Shetulov, D.I., Relation of resistance to cyclic loading with metals surface damage, Izv. Akad. Nauk SSSR, Met., 1991, no. 5, p. 160.
28.
go back to reference Myl’nikov, V.V., Shetulov, D.I., and Chernyshov, E.A., Investigation into the surface damage of pure metals allowing for the cyclic loading frequency, Russ. J. Non-Ferrous Metall., 2013, vol. 54, no. 3, pp. 229–233.CrossRef Myl’nikov, V.V., Shetulov, D.I., and Chernyshov, E.A., Investigation into the surface damage of pure metals allowing for the cyclic loading frequency, Russ. J. Non-Ferrous Metall., 2013, vol. 54, no. 3, pp. 229–233.CrossRef
29.
go back to reference Myl’nikov, V.V., Shetulov, D.I., and Chernyshev, E.A., On evaluation of durability criteria in carbon steels, Met. Technol., 2010, no. 2, pp. 19–22. Myl’nikov, V.V., Shetulov, D.I., and Chernyshev, E.A., On evaluation of durability criteria in carbon steels, Met. Technol., 2010, no. 2, pp. 19–22.
30.
go back to reference Myl’nikov, V.V., Chernyshov, E.A., and Shetulov, D.I., Influence of cyclic loading frequency on fatigue resistance of high-strength structural materials, Zagotovit. Proizvod. Mashinostr., 2009, no. 2, pp. 33–36. Myl’nikov, V.V., Chernyshov, E.A., and Shetulov, D.I., Influence of cyclic loading frequency on fatigue resistance of high-strength structural materials, Zagotovit. Proizvod. Mashinostr., 2009, no. 2, pp. 33–36.
31.
go back to reference Myl’nikov, V.V., On the effect of load application frequency on fatigue resistance of materials, Mezhdunar. Zh. Prikl. Fundam. Issled., 2016, no. 6-2, pp. 202–205. Myl’nikov, V.V., On the effect of load application frequency on fatigue resistance of materials, Mezhdunar. Zh. Prikl. Fundam. Issled., 2016, no. 6-2, pp. 202–205.
Metadata
Title
Fatigue Resistance Changes of Structural Steels at Different Load Spectra
Authors
V. V. Myl’nikov
D. I. Shetulov
O. B. Kondrashkin
E. A. Chernyshov
A. I. Pronin
Publication date
01-10-2019
Publisher
Pleiades Publishing
Published in
Steel in Translation / Issue 10/2019
Print ISSN: 0967-0912
Electronic ISSN: 1935-0988
DOI
https://doi.org/10.3103/S0967091219100097

Other articles of this Issue 10/2019

Steel in Translation 10/2019 Go to the issue

Premium Partners