Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 6/2021

08-02-2021 | Original Article

Fault detection of railway freight cars mechanical components based on multi-feature fusion convolutional neural network

Authors: Tao Ye, Zhihao Zhang, Xi Zhang, Yongran Chen, Fuqiang Zhou

Published in: International Journal of Machine Learning and Cybernetics | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The fault detection of the mechanical components in railway freight cars is important to the safety of railway transportation. Owing to the small size of the mechanical components, a manual detection method has a low detection efficiency. In addition, traditional computer vision technology has difficulty detecting multiple categories of objects simultaneously. Inspired by the use of one-stage deep-learning-based object detectors, in this paper, a multi-feature fusion network (MFF-net) for the simultaneous detection of three typical mechanical component faults is proposed. By embedding three modules in the network to improve the detection effect of small mechanical component faults, the feature fusion module is used to supplement the deep semantic information of the shallow feature maps. A multi-branch dilated convolution module uses dilated convolution and multi-branch networks to obtain the fusion features of multi-scale receptive fields, and the squeeze-and-excitation block is embedded in the network to enhance the channel features. All experiments used Nvidia 1080Ti GPUs for training on the PyTorch platform. The experimental results show that the three modules used in the network all contribute to the fault detection of railway freight car mechanical components, and that the detection performance of MFF-net is better than that of most other popular SSD-based one-stage object detectors. When the input image size is 300 pixels × 300 pixels, MFF-net can achieve 0.8872 mAP and 33 frames per second. It has good robustness to complex noise environment and can realize real-time fault detection of railway freight car mechanical components.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Liu R, Wang Y (2005) Principle and application of TFDS. Chin Railw 5:26–27 Liu R, Wang Y (2005) Principle and application of TFDS. Chin Railw 5:26–27
2.
go back to reference Liu W, Anguelov D, Erhan D et al (2016) SSD: Single shot multibox detector. In. Lecture Notes in Computer Science European conference on computer vision (ECCV), Springer, Cham, pp 21–37 Liu W, Anguelov D, Erhan D et al (2016) SSD: Single shot multibox detector. In. Lecture Notes in Computer Science European conference on computer vision (ECCV), Springer, Cham, pp 21–37
3.
go back to reference Li Z X, Zhou F Q (2017) FSSD: Feature fusion single shot multibox detector. arXiv preprint arXiv:1712.00960 Li Z X, Zhou F Q (2017) FSSD: Feature fusion single shot multibox detector. arXiv preprint arXiv:1712.00960
4.
go back to reference Liu S, Huang D, Wang Y (2018) Receptive field block net for accurate and fast object detection. In: Lecture Notes in Computer Science Proceedings of the European Conference on computer vision (ECCV), pp 404–419 Liu S, Huang D, Wang Y (2018) Receptive field block net for accurate and fast object detection. In: Lecture Notes in Computer Science Proceedings of the European Conference on computer vision (ECCV), pp 404–419
5.
go back to reference Liu Z, Xiao D, Chen Y (2012) Displacement fault detection of bearing weight saddle in TFDS based on though transform and symmetry validation. In: 9th International Conference on fuzzy systems and knowledge discovery 2012, IEEE, pp 1404–1408 Liu Z, Xiao D, Chen Y (2012) Displacement fault detection of bearing weight saddle in TFDS based on though transform and symmetry validation. In: 9th International Conference on fuzzy systems and knowledge discovery 2012, IEEE, pp 1404–1408
6.
go back to reference Xia Y, Xie F, Jiang Z (2010) Broken railway fastener detection based on Adaboost algorithm. In: International Conference on optoelectronics and image processing 2010, IEEE, 1, pp 313–316. Xia Y, Xie F, Jiang Z (2010) Broken railway fastener detection based on Adaboost algorithm. In: International Conference on optoelectronics and image processing 2010, IEEE, 1, pp 313–316.
7.
go back to reference Liu L, Zhou F, He Y (2015) Automated visual inspection system for bogie block key under complex freight train environment. IEEE Trans Instrum Meas 65(1):2–14CrossRef Liu L, Zhou F, He Y (2015) Automated visual inspection system for bogie block key under complex freight train environment. IEEE Trans Instrum Meas 65(1):2–14CrossRef
8.
go back to reference Zou R, Xu ZY, Li JY et al (2015) Real-time monitoring of brake shoe keys in freight cars. Front Inf Technol Electron Eng 16(3):191–204CrossRef Zou R, Xu ZY, Li JY et al (2015) Real-time monitoring of brake shoe keys in freight cars. Front Inf Technol Electron Eng 16(3):191–204CrossRef
9.
go back to reference Min Y, Xiao B, Dang J et al (2018) Real time detection system for rail surface defects based on machine vision. EURASIP J Image Video Process 1:3CrossRef Min Y, Xiao B, Dang J et al (2018) Real time detection system for rail surface defects based on machine vision. EURASIP J Image Video Process 1:3CrossRef
10.
go back to reference Sun J, Xiao Z, Xie Y (2017) Automatic multi-fault recognition in TFDS based on convolutional neural network. Neurocomputing 222:127–136CrossRef Sun J, Xiao Z, Xie Y (2017) Automatic multi-fault recognition in TFDS based on convolutional neural network. Neurocomputing 222:127–136CrossRef
11.
go back to reference Chen J, Liu Z, Wang H et al (2017) Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans Instrum Meas 67(2):257–269CrossRef Chen J, Liu Z, Wang H et al (2017) Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Trans Instrum Meas 67(2):257–269CrossRef
12.
go back to reference Xu X, Lei Y, Yang F (2018) Railway subgrade defect automatic recognition method based on improved Faster R-CNN. Sci Program 2018:1–12 Xu X, Lei Y, Yang F (2018) Railway subgrade defect automatic recognition method based on improved Faster R-CNN. Sci Program 2018:1–12
13.
go back to reference Zhou F, Li J, Li X et al (2019) Freight car target detection in a complex background based on convolutional neural networks. Proc Inst Mech Eng Part F J Rail Rapid Transit 233(3):298–311CrossRef Zhou F, Li J, Li X et al (2019) Freight car target detection in a complex background based on convolutional neural networks. Proc Inst Mech Eng Part F J Rail Rapid Transit 233(3):298–311CrossRef
14.
go back to reference Chen DJ, Zhang WS, Yang Y (2017) Detection and recognition of high-speed railway catenary locator based on deep learning. J Univ Sci Technol China 47(4):320–327 Chen DJ, Zhang WS, Yang Y (2017) Detection and recognition of high-speed railway catenary locator based on deep learning. J Univ Sci Technol China 47(4):320–327
15.
go back to reference Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on neural information processing systems—Volume 1 (NIPS'12),pp 1097–1105 Krizhevsky A, Sutskever I, Hinton G E (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on neural information processing systems—Volume 1 (NIPS'12),pp 1097–1105
16.
go back to reference Sermanet P, Eigen D, Zhang X et al (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229. Sermanet P, Eigen D, Zhang X et al (2013) Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.
17.
go back to reference Girshick R, Donahue J, Darrell T et al (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587. Girshick R, Donahue J, Darrell T et al (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587.
18.
go back to reference Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE International Conference on computer vision, pp 1440–1448. Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE International Conference on computer vision, pp 1440–1448.
19.
go back to reference Ren S, He KM, Girshick R et al (2015) Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149CrossRef Ren S, He KM, Girshick R et al (2015) Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149CrossRef
20.
go back to reference Redmon J, Divvala S, Girshick R et al (2016) You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 779–788. Redmon J, Divvala S, Girshick R et al (2016) You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 779–788.
21.
go back to reference Lin T Y, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 2117–2125 Lin T Y, Dollár P, Girshick R et al (2017) Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 2117–2125
22.
go back to reference Fu C Y, Liu W, Ranga A et al (2017) DSSD: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659. Fu C Y, Liu W, Ranga A et al (2017) DSSD: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659.
23.
go back to reference Szegedy C, Liu W, Jia Y (2015) Going deep with convolutions. In: Proceedings of the IEEE Conference on computer vision and pattern recognition (CVPR), Boston, MA, pp 1–9. Szegedy C, Liu W, Jia Y (2015) Going deep with convolutions. In: Proceedings of the IEEE Conference on computer vision and pattern recognition (CVPR), Boston, MA, pp 1–9.
24.
go back to reference Hu J, Shen L, Sun G et al (2017) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023CrossRef Hu J, Shen L, Sun G et al (2017) Squeeze-and-excitation networks. IEEE Trans Pattern Anal Mach Intell 42(8):2011–2023CrossRef
25.
go back to reference Zhang S, Wen L, Bian X et al (2018) Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 4203–4212 Zhang S, Wen L, Bian X et al (2018) Single-shot refinement neural network for object detection. In: Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 4203–4212
26.
go back to reference Howard A G, Zhu M, Chen B et al (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 Howard A G, Zhu M, Chen B et al (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861
27.
go back to reference Zhang X, Zhou X, Lin M et al (2017) ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 6848–6856 Zhang X, Zhou X, Lin M et al (2017) ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on computer vision and pattern recognition, pp 6848–6856
28.
go back to reference Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
29.
go back to reference He K M, Zhang X Y, Ren S Q et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, pp 770–778 He K M, Zhang X Y, Ren S Q et al (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, pp 770–778
30.
go back to reference Lin TY, Goyal P, Girshick R et al (2018) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327CrossRef Lin TY, Goyal P, Girshick R et al (2018) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell 42(2):318–327CrossRef
Metadata
Title
Fault detection of railway freight cars mechanical components based on multi-feature fusion convolutional neural network
Authors
Tao Ye
Zhihao Zhang
Xi Zhang
Yongran Chen
Fuqiang Zhou
Publication date
08-02-2021
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 6/2021
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-021-01274-z

Other articles of this Issue 6/2021

International Journal of Machine Learning and Cybernetics 6/2021 Go to the issue