Skip to main content
Top
Published in:
Cover of the book

2013 | OriginalPaper | Chapter

5. FE-Techniques for Crack Analysis in Linear-Elastic Structures

Author : Meinhard Kuna

Published in: Finite Elements in Fracture Mechanics

Publisher: Springer Netherlands

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The goal of a FEM analysis is the calculation of fracture-mechanical loading parameters for a crack in a structure (test piece, component, material’s microstructure) in the case of linear-elastic (isotropic or anisotropic) material behavior. In Sect. 3.2 the relevant loading parameters of LEFM were introduced: the stress intensity factors \(K_\mathrm{{I}}\), \(K_\mathrm{{II}}\), \(K_\mathrm{{III}}\) and the energy release rate \(G \equiv J\). Their values depend on the geometry of the structure, its load, the length and shape of the crack and on the material’s elastic properties.
Although FEM can be directly applied to solve a BVP, its use in crack problems involves a fundamental difficulty. This difficulty lies in the exact determination of the singularity at the crack tip with the help of a numerical approximation method such as FEM. Conventional finite element types only have regular polynomial functions for \(u_i\), \(\varepsilon _{ij}\) and \(\sigma _{ij}\). Therefore, they reproduce the crack singularity poorly. For this reason, special element functions, numerical algorithms or evaluation techniques are needed to obtain loading parameters from a FEM solution efficiently and accurately. In the following chapter, we will introduce the methods that have been developed for this, concentrating mainly on stationary cracks. The particularities of FEM techniques and meshes in analyzing unsteady cracks will be dealt with in Chap. 8.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Byskov E (1970) The calculation of stress intensity factors using the finite element method with cracked elements. Int J Fract 6:159–167CrossRef Byskov E (1970) The calculation of stress intensity factors using the finite element method with cracked elements. Int J Fract 6:159–167CrossRef
2.
go back to reference Wilson WK (1973) Finite element methods for elastic bodies containing cracks. In: Sih GC (ed) Methods of analysis and solutions of crack problems. Mechanics of fracture, vol 1. Noordhoff, Leyden, pp 484–515 Wilson WK (1973) Finite element methods for elastic bodies containing cracks. In: Sih GC (ed) Methods of analysis and solutions of crack problems. Mechanics of fracture, vol 1. Noordhoff, Leyden, pp 484–515
4.
go back to reference Benzley SF (1974) Representations of singularities with isoparametric finite elements. Int J Numer Methods Eng 8:537–545MATHCrossRef Benzley SF (1974) Representations of singularities with isoparametric finite elements. Int J Numer Methods Eng 8:537–545MATHCrossRef
5.
go back to reference Blackburn WS (1973) Calculation of stress intensity factors at crack tips using special finite elements. In: Whiteman JR (ed) The mathematics of finite elements and applications. Academic Press, London, pp 327–336 Blackburn WS (1973) Calculation of stress intensity factors at crack tips using special finite elements. In: Whiteman JR (ed) The mathematics of finite elements and applications. Academic Press, London, pp 327–336
6.
go back to reference Tracey DM (1971) Finite elements for determination of crack tip elastic stress intensity factors. Eng Fract Mech 3:255–256CrossRef Tracey DM (1971) Finite elements for determination of crack tip elastic stress intensity factors. Eng Fract Mech 3:255–256CrossRef
7.
go back to reference Blackburn WS, Hellen TK (1977) Calculation of stress intensity factors in three-dimensions by finite element methods. Int J Numer Methods Eng 11:211–229MATHCrossRef Blackburn WS, Hellen TK (1977) Calculation of stress intensity factors in three-dimensions by finite element methods. Int J Numer Methods Eng 11:211–229MATHCrossRef
8.
go back to reference Tracey DM (1974) Finite elements for three-dimensional elastic crack analysis. J Nucl Eng Des 26:282–290CrossRef Tracey DM (1974) Finite elements for three-dimensional elastic crack analysis. J Nucl Eng Des 26:282–290CrossRef
9.
go back to reference Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9:495–507MATHCrossRef Henshell RD, Shaw KG (1975) Crack tip finite elements are unnecessary. Int J Numer Methods Eng 9:495–507MATHCrossRef
10.
go back to reference Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng 10:25–37MATHCrossRef Barsoum RS (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int J Numer Methods Eng 10:25–37MATHCrossRef
11.
go back to reference Banks-Sills L, Bortman Y (1984) Reappraisal of the quarter-point quadrilaterial element in linear fracture mechanics. Int J Fract 25:169–180CrossRef Banks-Sills L, Bortman Y (1984) Reappraisal of the quarter-point quadrilaterial element in linear fracture mechanics. Int J Fract 25:169–180CrossRef
12.
go back to reference Freese CE, Tracey DM (1976) The natural triangle versus collapsed quadrilateral for elastic crack analysis. Int J Fract 12:767–770 Freese CE, Tracey DM (1976) The natural triangle versus collapsed quadrilateral for elastic crack analysis. Int J Fract 12:767–770
13.
go back to reference Barsoum RS (1977) Triangular quarter point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Methods Eng 11:85–98MATHCrossRef Barsoum RS (1977) Triangular quarter point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Methods Eng 11:85–98MATHCrossRef
14.
go back to reference Hussain MA, Coffin LF, Zaleski KA (1981) Three dimensional singular elements. Comput Struct 13:595–599MATHCrossRef Hussain MA, Coffin LF, Zaleski KA (1981) Three dimensional singular elements. Comput Struct 13:595–599MATHCrossRef
15.
16.
go back to reference Banks-Sills L, Sherman D (1989) On quarter-point three dimensional finite elements in elastic fracture mechanics. Int J Fract 41:177–196CrossRef Banks-Sills L, Sherman D (1989) On quarter-point three dimensional finite elements in elastic fracture mechanics. Int J Fract 41:177–196CrossRef
17.
go back to reference Banks-Sills L, Sherman D (1992) On the computation of stress intensity factors for three-dimensional geometries by means of the stiffness derivative and J-integral methods. Int J Fract 53:1–20 Banks-Sills L, Sherman D (1992) On the computation of stress intensity factors for three-dimensional geometries by means of the stiffness derivative and J-integral methods. Int J Fract 53:1–20
18.
go back to reference Hartranft RJ, Sih GC (1968) Effect of plate thickness on the bending stress distribution around through cracks. J Math Phys 47:276–291MATH Hartranft RJ, Sih GC (1968) Effect of plate thickness on the bending stress distribution around through cracks. J Math Phys 47:276–291MATH
19.
go back to reference Zienkiewicz OC, Taylor RL (1991) The finite element method, vol 2, 4th edn. McGraw Hill, London Zienkiewicz OC, Taylor RL (1991) The finite element method, vol 2, 4th edn. McGraw Hill, London
20.
go back to reference Barsoum RS (1976) A degenerate solid element for linear fracture analysis of plate bending and general shells. Int J Numer Methods Eng 10:551–564MATHCrossRef Barsoum RS (1976) A degenerate solid element for linear fracture analysis of plate bending and general shells. Int J Numer Methods Eng 10:551–564MATHCrossRef
21.
go back to reference Barsoum RS, Loomis RW, Stewart BD (1979) Analysis of through cracks in cylindrical shells by quarter-point elements. Int J Fract Mech 15:259–280 Barsoum RS, Loomis RW, Stewart BD (1979) Analysis of through cracks in cylindrical shells by quarter-point elements. Int J Fract Mech 15:259–280
22.
go back to reference Alwar RS, Nambissan KNR (1983) Three-dimensional finite element analysis of cracked thick plates in bending. Int J Numer Methods Eng 19:293–303MATHCrossRef Alwar RS, Nambissan KNR (1983) Three-dimensional finite element analysis of cracked thick plates in bending. Int J Numer Methods Eng 19:293–303MATHCrossRef
23.
go back to reference Zucchini A, Hui CY, Zehnder AT (2000) Crack tip stress fields for thin, cracked plates in bending, shear and twisting: a comparison of plate theory and three-dimensional elasticity theory solutions. Int J Fract 104:387–407CrossRef Zucchini A, Hui CY, Zehnder AT (2000) Crack tip stress fields for thin, cracked plates in bending, shear and twisting: a comparison of plate theory and three-dimensional elasticity theory solutions. Int J Fract 104:387–407CrossRef
24.
25.
go back to reference Pian THH, Tong P, Luk CH (1971) Elastic crack analysis by a finite element hybrid method. In: 3. Conference on matrix methods in structural mechanics, Wright Patterson Air Force Base, Ohio, pp 661–682 Pian THH, Tong P, Luk CH (1971) Elastic crack analysis by a finite element hybrid method. In: 3. Conference on matrix methods in structural mechanics, Wright Patterson Air Force Base, Ohio, pp 661–682
26.
go back to reference Schnack E, Wolf M (1978) Application of displacement and hybrid stress methods to plane notch and crack problems. Int J Numer Methods Eng 12:963–975MATHCrossRef Schnack E, Wolf M (1978) Application of displacement and hybrid stress methods to plane notch and crack problems. Int J Numer Methods Eng 12:963–975MATHCrossRef
27.
go back to reference Atluri SN, Kobayashi AS, Nakagaki M (1975) An assumed displacement hybrid finite element model for linear fracture mechanics. Int J Fract 11:257–271CrossRef Atluri SN, Kobayashi AS, Nakagaki M (1975) An assumed displacement hybrid finite element model for linear fracture mechanics. Int J Fract 11:257–271CrossRef
28.
go back to reference Tong P, Pian THH, Lasry H (1973) A hybrid element approach to crack problems in plane elasticity. Int J Numer Methods Eng 7:297–308MATHCrossRef Tong P, Pian THH, Lasry H (1973) A hybrid element approach to crack problems in plane elasticity. Int J Numer Methods Eng 7:297–308MATHCrossRef
29.
go back to reference Kuna M, Khanh DQ (1978) Ein spezielles Hybridelement fnr die Spannungsanalyse ebener Körper mit Rissen. Berichte VIII. Int Kongre Mathematik in den Ingenieurwissenschaften, IKM Weimar 2, 71–76 Kuna M, Khanh DQ (1978) Ein spezielles Hybridelement fnr die Spannungsanalyse ebener Körper mit Rissen. Berichte VIII. Int Kongre Mathematik in den Ingenieurwissenschaften, IKM Weimar 2, 71–76
30.
go back to reference Tong P (1977) A hybrid element for rectilinear anisotropic material. Int J Numer Methods Eng 11:377–383MATHCrossRef Tong P (1977) A hybrid element for rectilinear anisotropic material. Int J Numer Methods Eng 11:377–383MATHCrossRef
31.
go back to reference Lin KY, Mar JW (1976) Finite element analysis of stress intensity factors for a crack at a bi-material interface. Int J Fract 12:521–531 Lin KY, Mar JW (1976) Finite element analysis of stress intensity factors for a crack at a bi-material interface. Int J Fract 12:521–531
32.
go back to reference Drumm R (1982) Zur effektiven FEM-Analyse ebener Spannungskonzentrationsprobleme. PhD thesis, Universität Karlsruhe, Karlsruhe, Deutschland Drumm R (1982) Zur effektiven FEM-Analyse ebener Spannungskonzentrationsprobleme. PhD thesis, Universität Karlsruhe, Karlsruhe, Deutschland
33.
go back to reference Pian THH, Moriya K (1978) Three-dimensional fracture analysis by assumed stress hybrid elements. In: Luxmoore AR (ed) Numerical methods in fracture mechanics. Pineridge Press, Swansea, pp 363–373 Pian THH, Moriya K (1978) Three-dimensional fracture analysis by assumed stress hybrid elements. In: Luxmoore AR (ed) Numerical methods in fracture mechanics. Pineridge Press, Swansea, pp 363–373
34.
go back to reference Kuna M (1982) Konstruktion und Anwendung hybrider Rissspitzenelemente für dreidimensionale Aufgaben. Tech Mech 3:37–43 Kuna M (1982) Konstruktion und Anwendung hybrider Rissspitzenelemente für dreidimensionale Aufgaben. Tech Mech 3:37–43
35.
go back to reference Atluri SN, Kartiresan K (1979) 3D analysis of surface flaws in thick-walled reactor pressure vessels using displacement-hybrid finite element method. Nucl Eng Des 51:163–176CrossRef Atluri SN, Kartiresan K (1979) 3D analysis of surface flaws in thick-walled reactor pressure vessels using displacement-hybrid finite element method. Nucl Eng Des 51:163–176CrossRef
36.
go back to reference Kuna M, Zwicke M (1989) A mixed hybrid finite element for three dimensional elastic crack analysis. Int J Fract 45:65–79CrossRef Kuna M, Zwicke M (1989) A mixed hybrid finite element for three dimensional elastic crack analysis. Int J Fract 45:65–79CrossRef
37.
go back to reference Rhee HC, Atluri SN (1982) Hybrid stress finite element analysis of bending of a plate with a through flaw. Int J Numer Methods Eng 18:259–271MATHCrossRef Rhee HC, Atluri SN (1982) Hybrid stress finite element analysis of bending of a plate with a through flaw. Int J Numer Methods Eng 18:259–271MATHCrossRef
38.
go back to reference Moriya K (1982) Finite element analysis of cracked plate subjected to out-of-plane bending, twisting and shear. Bull Jpn Soc Mech Eng 25:1202–1210CrossRef Moriya K (1982) Finite element analysis of cracked plate subjected to out-of-plane bending, twisting and shear. Bull Jpn Soc Mech Eng 25:1202–1210CrossRef
39.
go back to reference Atluri SN (1978) Hybrid finite element models for linear and nonlinear fracture mechanics. In: Luxmoore AR (ed) Numerical methods in fracture mechanics. Pineridge Press, Swansea, pp 363–373 Atluri SN (1978) Hybrid finite element models for linear and nonlinear fracture mechanics. In: Luxmoore AR (ed) Numerical methods in fracture mechanics. Pineridge Press, Swansea, pp 363–373
40.
go back to reference Tong P, Atluri SN (1977) On hybrid finite element technique for crack analysis. In: Sih GC (ed) Fracture mechanics and technology. Nordhoff, New York, pp 1445–1465 Tong P, Atluri SN (1977) On hybrid finite element technique for crack analysis. In: Sih GC (ed) Fracture mechanics and technology. Nordhoff, New York, pp 1445–1465
41.
go back to reference Kuna M (1990) Entwicklung und Anwendung effizienter numerischer Verfahren zur bruchmechanischen Beanspruchungsanalyse am Beispiel hybrider finiter Elemente. Habilitation, Martin Luther Universität Halle Kuna M (1990) Entwicklung und Anwendung effizienter numerischer Verfahren zur bruchmechanischen Beanspruchungsanalyse am Beispiel hybrider finiter Elemente. Habilitation, Martin Luther Universität Halle
42.
go back to reference Tada H, Paris P, Irwin G (1985) The stress analysis of cracks handbook, 2nd edn. Paris Production Inc., St. Louis Tada H, Paris P, Irwin G (1985) The stress analysis of cracks handbook, 2nd edn. Paris Production Inc., St. Louis
43.
go back to reference Fett T (1998) A compendium of T-stress solutions. Technical report FZKA 6057, Forschungszentrum Karlsruhe, Technik und Umwelt Fett T (1998) A compendium of T-stress solutions. Technical report FZKA 6057, Forschungszentrum Karlsruhe, Technik und Umwelt
44.
go back to reference Eisentraut UM, Kuna M (1986) Ein FEM-Programm zur Lösung ebener, axialsymmetrischer und räumlicher Riss-. Festigkeits- und Wärmeleitprobleme. Tech Mech 7:51–58 Eisentraut UM, Kuna M (1986) Ein FEM-Programm zur Lösung ebener, axialsymmetrischer und räumlicher Riss-. Festigkeits- und Wärmeleitprobleme. Tech Mech 7:51–58
45.
go back to reference Yamamoto Y, Sumi Y (1978) Stress intensity factors of three-dimensional cracks. Int J Fract 14:17–38CrossRef Yamamoto Y, Sumi Y (1978) Stress intensity factors of three-dimensional cracks. Int J Fract 14:17–38CrossRef
46.
go back to reference Kuna M (1984) Behandlung räumlicher Rissprobleme mit der Methode der finiten Elemente. Tech Mech 5:23–26 Kuna M (1984) Behandlung räumlicher Rissprobleme mit der Methode der finiten Elemente. Tech Mech 5:23–26
47.
go back to reference Parks DM (1974) Stiffness derivative finite element technique for determination of crack-tip stress intensity factors. Int J Fract 10:487–502CrossRef Parks DM (1974) Stiffness derivative finite element technique for determination of crack-tip stress intensity factors. Int J Fract 10:487–502CrossRef
48.
go back to reference Hellen TK (1975) On the method of virtual crack extensions. Int J Numer Methods Eng 9:187–207MATHCrossRef Hellen TK (1975) On the method of virtual crack extensions. Int J Numer Methods Eng 9:187–207MATHCrossRef
49.
go back to reference deLorenzi HG (1982) On the energy release rate and the J-integral for 3-D crack configurations. Int J Fract 19:183–193 deLorenzi HG (1982) On the energy release rate and the J-integral for 3-D crack configurations. Int J Fract 19:183–193
50.
go back to reference Lin SC, Abel JF (1988) Variational approach for a new direct-integration form of the virtual crack extension method. Int J Fract 38:217–235 Lin SC, Abel JF (1988) Variational approach for a new direct-integration form of the virtual crack extension method. Int J Fract 38:217–235
51.
go back to reference Wawrzynek PA, Ingraffea AR (1987) Interactive finite-element analysis of fracture processes: an integrated approach. Theor Appl Fract Mech 8:137–150CrossRef Wawrzynek PA, Ingraffea AR (1987) Interactive finite-element analysis of fracture processes: an integrated approach. Theor Appl Fract Mech 8:137–150CrossRef
52.
go back to reference deLorenzi HG (1985) Energy release rate calculations by the finite element method. Eng Fract Mech 21:129–143CrossRef deLorenzi HG (1985) Energy release rate calculations by the finite element method. Eng Fract Mech 21:129–143CrossRef
53.
go back to reference Bass BR, Bryson JW (1985) Energy release rate techniques for combined thermo-mechanical loading. Int J Fract 22:R3–R7CrossRef Bass BR, Bryson JW (1985) Energy release rate techniques for combined thermo-mechanical loading. Int J Fract 22:R3–R7CrossRef
54.
go back to reference Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938CrossRef Rybicki EF, Kanninen MF (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9:931–938CrossRef
55.
go back to reference Buchholz FG (1984) Improved formulae for the finite element calculation of the strain energy release rate by modified crack closure integral method. In: Robinson Dorset J (ed) Accuracy, reliability and Training in FEM technology. Robinson and Associates, Dorset, pp 650–659. Buchholz FG (1984) Improved formulae for the finite element calculation of the strain energy release rate by modified crack closure integral method. In: Robinson Dorset J (ed) Accuracy, reliability and Training in FEM technology. Robinson and Associates, Dorset, pp 650–659.
56.
go back to reference Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28:251–274CrossRef Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28:251–274CrossRef
57.
go back to reference Ramamurthy TS, Krishnamurthy T, Narayana KB, Vijayakumar K, Dattaguru B (1986) Modified crack closure integral method with quarter point elements. Mech Res Commun 13:179–186CrossRef Ramamurthy TS, Krishnamurthy T, Narayana KB, Vijayakumar K, Dattaguru B (1986) Modified crack closure integral method with quarter point elements. Mech Res Commun 13:179–186CrossRef
58.
go back to reference Singh R, Carter B, Wawrzynek P, Ingraffea A (1998) Universal crack closure integral for SIF estimation. Eng Fract Mech 60:133–146CrossRef Singh R, Carter B, Wawrzynek P, Ingraffea A (1998) Universal crack closure integral for SIF estimation. Eng Fract Mech 60:133–146CrossRef
59.
go back to reference Shivakumar KN, Tan PW, Newman JC (1988) A virtual crack-closure technique for calculating stress intensity factors for cracked three-dimensional bodies. Int J Fract 36:R43–50 Shivakumar KN, Tan PW, Newman JC (1988) A virtual crack-closure technique for calculating stress intensity factors for cracked three-dimensional bodies. Int J Fract 36:R43–50
60.
go back to reference Smith SA, Raju IS (1999) Evaluation of stress intensity factors using general finite element models. In: Panontin TL, Sheppard SL (eds) Fatigue and fracture mechanics. ASTM STP 1332. American Society for Testing and Materials, Philadelphia, pp 176–200 Smith SA, Raju IS (1999) Evaluation of stress intensity factors using general finite element models. In: Panontin TL, Sheppard SL (eds) Fatigue and fracture mechanics. ASTM STP 1332. American Society for Testing and Materials, Philadelphia, pp 176–200
61.
go back to reference Abdel Wahab MM, De Roeck G (1996) A finite element solution for elliptical cracks using the ICCI method. Eng Fract Mech 53:519–526 Abdel Wahab MM, De Roeck G (1996) A finite element solution for elliptical cracks using the ICCI method. Eng Fract Mech 53:519–526
62.
go back to reference Kemmer G (2000) Berechnung von elektromechanischen Intensitätsparametern bei Rissen in Piezokeramiken. Dissertation, Reihe 18, Nr. 261, TU Dresden. VDI-Verlag Düsseldorf Kemmer G (2000) Berechnung von elektromechanischen Intensitätsparametern bei Rissen in Piezokeramiken. Dissertation, Reihe 18, Nr. 261, TU Dresden. VDI-Verlag Düsseldorf
63.
go back to reference De Roeck G, Abdel Wahab MM (1995) Strain energy release rate formulae for 3D finite element. Eng Fract Mech 50:569–580 De Roeck G, Abdel Wahab MM (1995) Strain energy release rate formulae for 3D finite element. Eng Fract Mech 50:569–580
64.
go back to reference Murakami Y (1987) Stress intensity factors handbook, vol 1–5. Pergamon Press, Oxford Murakami Y (1987) Stress intensity factors handbook, vol 1–5. Pergamon Press, Oxford
65.
go back to reference Andrasic CP, Parker AP (1984) Dimensionless stress intensity factors for cracked thick cylinders under polynomial crack face loadings. Eng Fract Mech 19:187–193CrossRef Andrasic CP, Parker AP (1984) Dimensionless stress intensity factors for cracked thick cylinders under polynomial crack face loadings. Eng Fract Mech 19:187–193CrossRef
66.
go back to reference Parks DM, Kamenetzky EM (1979) Weight functions from virtual crack extensions. Int J Numer Methods Eng 14:1693–1706MATHCrossRef Parks DM, Kamenetzky EM (1979) Weight functions from virtual crack extensions. Int J Numer Methods Eng 14:1693–1706MATHCrossRef
67.
go back to reference Paris PC, McMeeking RM, Tada H (1976) The weight function method for determining stress intensity factors. In: Cracks and fracture, STP 601. American Society for Testing of Materials, Philadelphia, pp 471–489 Paris PC, McMeeking RM, Tada H (1976) The weight function method for determining stress intensity factors. In: Cracks and fracture, STP 601. American Society for Testing of Materials, Philadelphia, pp 471–489
68.
go back to reference Sham TL (1987) A unified finite element method for determining weight functions in two and three dimensions. Int J Solids Struct 23:1357–1372MATHCrossRef Sham TL (1987) A unified finite element method for determining weight functions in two and three dimensions. Int J Solids Struct 23:1357–1372MATHCrossRef
69.
go back to reference Sham TL, Zhou Y (1989) Computation of three-dimensional weight functions for circular and elliptical cracks. Int J Fract 41:51–75MathSciNetCrossRef Sham TL, Zhou Y (1989) Computation of three-dimensional weight functions for circular and elliptical cracks. Int J Fract 41:51–75MathSciNetCrossRef
70.
go back to reference Busch M, Maschke H, Kuna M (1990) A novel BEM-approach to weight functions based on Bueckner’s fundamental field. In: Luxmoore A, Owen D (eds) Proceedings of 5th international conference on numerical methods in fracture mechanics, Freiburg, 23–27 April 1990. Pineridge Press, Swansea, pp 5–16 Busch M, Maschke H, Kuna M (1990) A novel BEM-approach to weight functions based on Bueckner’s fundamental field. In: Luxmoore A, Owen D (eds) Proceedings of 5th international conference on numerical methods in fracture mechanics, Freiburg, 23–27 April 1990. Pineridge Press, Swansea, pp 5–16
71.
go back to reference Kuna M, Rajiyah H, Atluri SN (1990) A new approach to determine weight functions from Bueckners’s fundamental field by the superposition technique. Int J Fract 44(4):R57–R63 Kuna M, Rajiyah H, Atluri SN (1990) A new approach to determine weight functions from Bueckners’s fundamental field by the superposition technique. Int J Fract 44(4):R57–R63
Metadata
Title
FE-Techniques for Crack Analysis in Linear-Elastic Structures
Author
Meinhard Kuna
Copyright Year
2013
Publisher
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-6680-8_5

Premium Partners