Skip to main content
Top
Published in: Journal of Nanoparticle Research 4/2013

01-04-2013 | Research Paper

Fe3Si nanoparticles for alternating magnetic field heating

Authors: Ying Jing, Shi-Hai He, Jian-Ping Wang

Published in: Journal of Nanoparticle Research | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, Fe3Si nanoparticles were fabricated and studied for alternating magnetic field heating. High-magnetic-moment and large magnetic anisotropy energy barrier were found for those particles through the temperature-dependent magnetic characterization and dynamic coercivity analysis. Although a large hysteresis area was expected for the nanoparticles to generate appreciable heat, it is not necessary so when only the criteria of saturation magnetization and magnetic anisotropy energy barrier are fulfilled. Heating performance of Fe3Si nanoparticles was investigated. Field-dependent magnetic characterization unravels the fact that sufficient switching of magnetic nanoparticles is critical for heat generation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Andrä W, Nowak H (2007) Magnetism in medicine. Wiley, Weinheim Andrä W, Nowak H (2007) Magnetism in medicine. Wiley, Weinheim
go back to reference Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921–083922CrossRef Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921–083922CrossRef
go back to reference Corten CC, Urban MW (2009) Repairing polymers using oscillating magnetic field. Adv Mater 21:5011–5015CrossRef Corten CC, Urban MW (2009) Repairing polymers using oscillating magnetic field. Adv Mater 21:5011–5015CrossRef
go back to reference Dong-Hyun K, Thai YT, Nikles DE, Brazel CS (2009) Heating of aqueous dispersions containing MnFe2O4 nanoparticles by radio-frequency magnetic field induction. IEEE Trans Magn 45:64–70CrossRef Dong-Hyun K, Thai YT, Nikles DE, Brazel CS (2009) Heating of aqueous dispersions containing MnFe2O4 nanoparticles by radio-frequency magnetic field induction. IEEE Trans Magn 45:64–70CrossRef
go back to reference Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635CrossRef
go back to reference Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrot JC, Taylor CB (1957) Effects of electromagnetic heating on internal viscera a preliminary to the treatment of human tumors. Ann Surg 161:890–895CrossRef Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrot JC, Taylor CB (1957) Effects of electromagnetic heating on internal viscera a preliminary to the treatment of human tumors. Ann Surg 161:890–895CrossRef
go back to reference Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRef Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091CrossRef
go back to reference Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4:1925–1929CrossRef Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC (2008) Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 4:1925–1929CrossRef
go back to reference Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293:80–86CrossRef Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293:80–86CrossRef
go back to reference Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys D 18:S2919–S2934 Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys D 18:S2919–S2934
go back to reference Huang S-H, Juang R-S (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanoparticle Res 13:4411–4430CrossRef Huang S-H, Juang R-S (2011) Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review. J Nanoparticle Res 13:4411–4430CrossRef
go back to reference Ionescu A, Vaz CAF, Trypiniotis T, Gürtler CM, García-Miquel H, Bland JAC, Vickers ME, Dalgliesh RM, Langridge S, Bugoslavsky Y, Miyoshi Y, Cohen LF, Ziebeck KRA (2005) Structural, magnetic, electronic, and spin transport properties of epitaxial Fe3Si/GaAs(001). Phys Rev B 71:094401CrossRef Ionescu A, Vaz CAF, Trypiniotis T, Gürtler CM, García-Miquel H, Bland JAC, Vickers ME, Dalgliesh RM, Langridge S, Bugoslavsky Y, Miyoshi Y, Cohen LF, Ziebeck KRA (2005) Structural, magnetic, electronic, and spin transport properties of epitaxial Fe3Si/GaAs(001). Phys Rev B 71:094401CrossRef
go back to reference Jeun M, Moon SJ, Kobayashi H, Shin HY, Tomitaka A, Kim YJ, Takemura Y, Paek SH, Park KH, Chung K-W, Bae S (2010) Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic Mn x Zn1-x Fe2O4 nanoparticles for hyperthermia. Appl Phys Lett 96:202511–202513CrossRef Jeun M, Moon SJ, Kobayashi H, Shin HY, Tomitaka A, Kim YJ, Takemura Y, Paek SH, Park KH, Chung K-W, Bae S (2010) Effects of Mn concentration on the ac magnetically induced heating characteristics of superparamagnetic Mn x Zn1-x Fe2O4 nanoparticles for hyperthermia. Appl Phys Lett 96:202511–202513CrossRef
go back to reference Jing Y, Xu Y, Wang J-P (2009) Fabrication of heuslar Fe3Si nanoparticles. J Appl Phys 105:07B520–07B523CrossRef Jing Y, Xu Y, Wang J-P (2009) Fabrication of heuslar Fe3Si nanoparticles. J Appl Phys 105:07B520–07B523CrossRef
go back to reference Kensuke Akiyama SK, Kadowaki Teiko, Hirabayashi Yasuo, Funakubo Hiroshi (2008) Epitaxial growth of ferromagnetic iron silicide thin films on silicon with Yttria-stabilized Zirconia buffer layer. Jap J Appl Phys 47:577–579CrossRef Kensuke Akiyama SK, Kadowaki Teiko, Hirabayashi Yasuo, Funakubo Hiroshi (2008) Epitaxial growth of ferromagnetic iron silicide thin films on silicon with Yttria-stabilized Zirconia buffer layer. Jap J Appl Phys 47:577–579CrossRef
go back to reference Kita E, Oda T, Kayano T, Sato S, Minagawa M, Yanagihara H, Kishimoto M, Mitsumata C, Hashimoto S, Yamada K, Ohkohchi N (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D 43:474011CrossRef Kita E, Oda T, Kayano T, Sato S, Minagawa M, Yanagihara H, Kishimoto M, Mitsumata C, Hashimoto S, Yamada K, Ohkohchi N (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D 43:474011CrossRef
go back to reference Kline TL, Xu Y-H, Jing Y, Wang J-P (2009) Biocompatible high-moment FeCo–Au magnetic nanoparticles for magnetic hyperthermia treatment optimization. J Magn Magn Mater 321:1525–1528CrossRef Kline TL, Xu Y-H, Jing Y, Wang J-P (2009) Biocompatible high-moment FeCo–Au magnetic nanoparticles for magnetic hyperthermia treatment optimization. J Magn Magn Mater 321:1525–1528CrossRef
go back to reference Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRef Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558CrossRef
go back to reference Lacroix LM, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner–Wohlfarth behavior and large losses. J Appl Phys 105:023911–023914CrossRef Lacroix LM, Malaki RB, Carrey J, Lachaize S, Respaud M, Goya GF, Chaudret B (2009) Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: evidences for Stoner–Wohlfarth behavior and large losses. J Appl Phys 105:023911–023914CrossRef
go back to reference Lee J-H, Jang J-t, Choi J-s, Moon SH, Noh S-h, Kim J-w, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6:418–422CrossRef Lee J-H, Jang J-t, Choi J-s, Moon SH, Noh S-h, Kim J-w, Kim J-G, Kim I-S, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nano 6:418–422CrossRef
go back to reference Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen IW (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4:52–65CrossRef Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen IW (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4:52–65CrossRef
go back to reference Maenosono S, Saita S (2006) Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans Magn 42:1638–1642CrossRef Maenosono S, Saita S (2006) Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia. IEEE Trans Magn 42:1638–1642CrossRef
go back to reference Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe–MgO core–shell nanoparticles by tuning dipole–dipole interactions. Adv Func Mater 22(17):3531–3538CrossRef Martinez-Boubeta C, Simeonidis K, Serantes D, Conde-Leborán I, Kazakis I, Stefanou G, Peña L, Galceran R, Balcells L, Monty C, Baldomir D, Mitrakas M, Angelakeris M (2012) Adjustable hyperthermia response of self-assembled ferromagnetic Fe–MgO core–shell nanoparticles by tuning dipole–dipole interactions. Adv Func Mater 22(17):3531–3538CrossRef
go back to reference Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Func Mater 21:4573–4581CrossRef Mehdaoui B, Meffre A, Carrey J, Lachaize S, Lacroix L-M, Gougeon M, Chaudret B, Respaud M (2011) Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Adv Func Mater 21:4573–4581CrossRef
go back to reference O’Handley RC (1999) Modern magnetic materials: principles and applications. Wiley, New york O’Handley RC (1999) Modern magnetic materials: principles and applications. Wiley, New york
go back to reference Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanoparticle Res 8:489–496CrossRef Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core-shell nanoclusters for biomedical applications. J Nanoparticle Res 8:489–496CrossRef
go back to reference Qiu J-M, Wang J-P (2006) Monodispersed and highly ordered L10 FePt nanoparticles prepared in the gas phase. Appl Phys Lett 88:192505–192506CrossRef Qiu J-M, Wang J-P (2006) Monodispersed and highly ordered L10 FePt nanoparticles prepared in the gas phase. Appl Phys Lett 88:192505–192506CrossRef
go back to reference Seehra MS, Singh V, Dutta P, Neeleshwar S, Chen YY, Chen CL, Chou SW, Chen CC (2010) Size-dependent magnetic parameters of fcc FePt nanoparticles: applications to magnetic hyperthermia. J Phys D 43:145002CrossRef Seehra MS, Singh V, Dutta P, Neeleshwar S, Chen YY, Chen CL, Chou SW, Chen CC (2010) Size-dependent magnetic parameters of fcc FePt nanoparticles: applications to magnetic hyperthermia. J Phys D 43:145002CrossRef
go back to reference Sharma R, Chen C (2009) Newer nanoparticles in hyperthermia treatment and thermometry. J Nanoparticle Res 11:671–689CrossRef Sharma R, Chen C (2009) Newer nanoparticles in hyperthermia treatment and thermometry. J Nanoparticle Res 11:671–689CrossRef
go back to reference Sharrock MP (1994) Time dependence of switching fields in magnetic recording media (invited). J Appl Phys 76:6413–6418CrossRef Sharrock MP (1994) Time dependence of switching fields in magnetic recording media (invited). J Appl Phys 76:6413–6418CrossRef
go back to reference Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRef Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRef
go back to reference Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107:123909–123912CrossRef Usov NA (2010) Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J Appl Phys 107:123909–123912CrossRef
Metadata
Title
Fe3Si nanoparticles for alternating magnetic field heating
Authors
Ying Jing
Shi-Hai He
Jian-Ping Wang
Publication date
01-04-2013
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 4/2013
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1517-5

Other articles of this Issue 4/2013

Journal of Nanoparticle Research 4/2013 Go to the issue

Premium Partners