Skip to main content
Top

2021 | OriginalPaper | Chapter

Feasibility Studies on Newly Conceptualized Inter-shaft Squeeze Film Damper (ISSFD) Rings for Vibration Attenuation

Authors : H. M. Shivaprasad, G. Giridhara, Ajit Kumar, Praveenkumar Kamanat, V. Arun Kumar

Published in: Proceedings of the 6th National Symposium on Rotor Dynamics

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Squeeze film dampers (SFDs) have become very essential for high-speed turbomachinery as means of vibration energy dissipating mechanism. However, SFDs are not very common for inter-shaft bearing applications and are still in the R&D phase. It is observed that the application of SFDs for inter-shaft bearing systems is not being pursued in a real practical sense, as it becomes extremely difficult to realize a compatible component facilitating the radial squeezing mechanism—where squeeze film oil could be introduced—thus resulting in squeeze film damping. The gap that could be made available between the inner spool and inner race or the outer spool and the outer race of the inter-shaft bearing also being very little further complicates the application of a conventional squeeze film damper in the inter-shaft bearing plane. In this research work, newly conceptualized inter-shaft squeeze film damper (ISSFD) rings are fabricated and tested for evaluating their damping potential characteristics in dedicated instrumented test rig/s fabricated for the purpose. Parametric experimentations are conducted in a single-spool test rig as a proof of concept in attempting to quantitatively evaluate the damping potential of ISSFD rings and hence the suitability of their applications in inter-shaft bearing plane of two-spool system. This research study very clearly indicated the damping contribution of the ISSFD rings, and the performance of the system improved in terms of substantial reduction in shaft vibration amplitudes. The study also clearly indicated that the ISSFD rings contribute toward the stiffness in the bearing plane also, and as a result, the rigid body critical speed gets shifted. Parametric experimental studies brought out the effect of different geometric parameters on the stiffness and damping contribution of ISSFD rings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li Q, James YL, Hamilton F (1985) Investigation of the steady-state response of a dual-rotor system with inter-shaft squeeze film damper. In: Beijing International Gas Turbine Symposium and Exposition, Beijing, People’s Republic of China, September 1–7 1985 Li Q, James YL, Hamilton F (1985) Investigation of the steady-state response of a dual-rotor system with inter-shaft squeeze film damper. In: Beijing International Gas Turbine Symposium and Exposition, Beijing, People’s Republic of China, September 1–7 1985
2.
go back to reference Li Q, James YL, Hamilton F (1986) Investigation of the steady-state response of a dual-rotor system with inter-shaft squeeze film damper. J Eng Gas Turb Power 108(4):605–612CrossRef Li Q, James YL, Hamilton F (1986) Investigation of the steady-state response of a dual-rotor system with inter-shaft squeeze film damper. J Eng Gas Turb Power 108(4):605–612CrossRef
3.
go back to reference Li Q, James YL, Hamilton F (1986) Investigation of the steady-state response of a dual-rotor system with inter-shaft squeeze film damper. J Eng Gas Turb Power 108(4):613–618CrossRef Li Q, James YL, Hamilton F (1986) Investigation of the steady-state response of a dual-rotor system with inter-shaft squeeze film damper. J Eng Gas Turb Power 108(4):613–618CrossRef
4.
go back to reference El-Shafei A (1991) Stability analysis of intershaft squeeze film dampers. J Sound Vibr 148(3):395–408CrossRef El-Shafei A (1991) Stability analysis of intershaft squeeze film dampers. J Sound Vibr 148(3):395–408CrossRef
5.
go back to reference El-Shafei A (1988) A new design of intershaft squeeze film dampers. In: Proceedings of the Vibration Institute, pp. 15–23 El-Shafei A (1988) A new design of intershaft squeeze film dampers. In: Proceedings of the Vibration Institute, pp. 15–23
6.
go back to reference El-Shafei A (1988) Stable intershaft squeeze film damper. United States Patent Number: 4,781,077 El-Shafei A (1988) Stable intershaft squeeze film damper. United States Patent Number: 4,781,077
7.
go back to reference Defaye C et al (2006) Experimental study of the radial and tangential forces in a whirling squeeze film damper. Tribol Trans 49(2):271–278CrossRef Defaye C et al (2006) Experimental study of the radial and tangential forces in a whirling squeeze film damper. Tribol Trans 49(2):271–278CrossRef
8.
go back to reference Gupta K, Chatterjee S (2011) Theoretical analysis of improved designs of intershaft squeeze film damper for aero engine applications. In: Proceedings of the National Symposium on Rotor Dynamics, NSRD-2011, pp 179–190, 19–21 Gupta K, Chatterjee S (2011) Theoretical analysis of improved designs of intershaft squeeze film damper for aero engine applications. In: Proceedings of the National Symposium on Rotor Dynamics, NSRD-2011, pp 179–190, 19–21
9.
go back to reference Gupta K, Chatterjee S (2006) An improved intershaft squeeze film damper device, Patent Number—199840 Gupta K, Chatterjee S (2006) An improved intershaft squeeze film damper device, Patent Number—199840
10.
go back to reference Jayaraman M, Arun Kumar V (2007) Compact flexible support for rotor bearing systems. Project Document, National Aerospace Laboratory Jayaraman M, Arun Kumar V (2007) Compact flexible support for rotor bearing systems. Project Document, National Aerospace Laboratory
Metadata
Title
Feasibility Studies on Newly Conceptualized Inter-shaft Squeeze Film Damper (ISSFD) Rings for Vibration Attenuation
Authors
H. M. Shivaprasad
G. Giridhara
Ajit Kumar
Praveenkumar Kamanat
V. Arun Kumar
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5701-9_22

Premium Partners