Skip to main content
Top
Published in: Pattern Analysis and Applications 3/2019

09-11-2018 | Survey

Feature subset selection for classification of malignant and benign breast masses in digital mammography

Authors: Ramzi Chaieb, Karim Kalti

Published in: Pattern Analysis and Applications | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computer-aided diagnosis of breast cancer is becoming increasingly a necessity given the exponential growth of performed mammograms. In particular, the breast mass diagnosis and classification arouse nowadays a great interest. Texture and shape are the most important criteria for the discrimination between benign and malignant masses. Various features have been proposed in the literature for the characterization of breast masses. The performance of each feature is related to its ability to discriminate masses from different classes. The feature space may include a large number of irrelevant ones which occupy a lot of storage space and decrease the classification accuracy. Therefore, a feature selection phase is usually needed to avoid these problems. The main objective of this paper is to select an optimal subset of features in order to improve masses classification performance. First, a study of various descriptors which are commonly used in the breast cancer field is conducted. Then, selection techniques are used in order to determine the most relevant features. A comparative study between selected features is performed in order to test their ability to discriminate between malignant and benign masses. The database used for experiments is composed of mammograms from the MiniMIAS database. Obtained results show that Gray-Level Run-Length Matrix features provide the best result.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Razavi AR, Gill H, Ahlfeldt H, Shahsavar N (2007) Predicting metastasis in breast cancer: comparing a decision tree with domain experts. J Med Syst 31:263–273CrossRef Razavi AR, Gill H, Ahlfeldt H, Shahsavar N (2007) Predicting metastasis in breast cancer: comparing a decision tree with domain experts. J Med Syst 31:263–273CrossRef
2.
go back to reference Smart CR, Hendrick RE, Rutledge JH, Smith RA (1995) Benefit of mammography screening in women ages 40 to 49 years: current evidence from randomized controlled trials. Cancer 75:1619–1626CrossRef Smart CR, Hendrick RE, Rutledge JH, Smith RA (1995) Benefit of mammography screening in women ages 40 to 49 years: current evidence from randomized controlled trials. Cancer 75:1619–1626CrossRef
3.
go back to reference Cady B, Michaelson JS (2001) The life-sparing potential of mammographic screening. Cancer 91:1699–1703CrossRef Cady B, Michaelson JS (2001) The life-sparing potential of mammographic screening. Cancer 91:1699–1703CrossRef
5.
go back to reference Tabar L, Fagerberg C, Gad A, Baldetorp L, Holmberg L, Grontoft O, Ljungquist U, Lundstrom B, Manson J, Eklund G et al (1985) Reduction in mortality from breast cancer after mass screening with mammography. Lancet 1:829–832CrossRef Tabar L, Fagerberg C, Gad A, Baldetorp L, Holmberg L, Grontoft O, Ljungquist U, Lundstrom B, Manson J, Eklund G et al (1985) Reduction in mortality from breast cancer after mass screening with mammography. Lancet 1:829–832CrossRef
6.
go back to reference Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184:613–617CrossRef Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184:613–617CrossRef
7.
go back to reference American Cancer Society (2003) Cancer prevention and early detection facts and figures. American Cancer Society, Atlanta American Cancer Society (2003) Cancer prevention and early detection facts and figures. American Cancer Society, Atlanta
8.
go back to reference American College of Radiology, ACR BI-RADS (2003) Mammography, ultrasound & magnetic resonance imaging, 4th edn. American College of Radiology, Reston American College of Radiology, ACR BI-RADS (2003) Mammography, ultrasound & magnetic resonance imaging, 4th edn. American College of Radiology, Reston
9.
go back to reference Bozek J, Mustra M, Delac K, Grgic M (2009) A survey of image processing algorithms in digital mammography. J Recent Adv Multimedia Signal Process Commun 231:631–657CrossRef Bozek J, Mustra M, Delac K, Grgic M (2009) A survey of image processing algorithms in digital mammography. J Recent Adv Multimedia Signal Process Commun 231:631–657CrossRef
10.
go back to reference Oliver A, Freixenet J, Mart J, Pérez E, Pont J, Denton ER et al (2010) A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14(2):87–110CrossRef Oliver A, Freixenet J, Mart J, Pérez E, Pont J, Denton ER et al (2010) A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14(2):87–110CrossRef
11.
go back to reference Rojas Domnguez A, Nandi AK (2009) Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognit 42(6):1138–1148CrossRef Rojas Domnguez A, Nandi AK (2009) Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognit 42(6):1138–1148CrossRef
12.
go back to reference Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y (2009) ‘Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. Inf Technol Biomed IEEE Trans IEEE 13(2):236–251CrossRef Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y (2009) ‘Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. Inf Technol Biomed IEEE Trans IEEE 13(2):236–251CrossRef
13.
go back to reference Elter M, Horsch A (2009) CADx of mammographic masses and clustered microcalcifications a review. Med Phys Am Assoc Phys Med 36(6):2052–2068 Elter M, Horsch A (2009) CADx of mammographic masses and clustered microcalcifications a review. Med Phys Am Assoc Phys Med 36(6):2052–2068
14.
go back to reference Narváez F, Romero E (2012) Breast mass classification using orthogonal moments. In: Breast imaging. Springer, Berlin, pp 64–71 Narváez F, Romero E (2012) Breast mass classification using orthogonal moments. In: Breast imaging. Springer, Berlin, pp 64–71
15.
go back to reference Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybernet SMC-3:610–621CrossRef Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybernet SMC-3:610–621CrossRef
16.
go back to reference Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches for automated detection and classification of masses in mammograms. Pattern Recognit 39:646–668CrossRef Cheng HD, Shi XJ, Min R, Hu LM, Cai XP, Du HN (2006) Approaches for automated detection and classification of masses in mammograms. Pattern Recognit 39:646–668CrossRef
17.
go back to reference Székely N, Tóth N, Pataki B (2006) A hybrid system for detecting masses in mammographic images. IEEE Trans Instrum Meas 55(3):944–952CrossRef Székely N, Tóth N, Pataki B (2006) A hybrid system for detecting masses in mammographic images. IEEE Trans Instrum Meas 55(3):944–952CrossRef
18.
go back to reference Nunes AP, Silva AC, Paiva ACD (2010) Detection of masses in mammographic images using geometry, Simpson’s Diversity Index and SVM. Int J Signal Imaging Syst Eng Indersci 3(1):40–51CrossRef Nunes AP, Silva AC, Paiva ACD (2010) Detection of masses in mammographic images using geometry, Simpson’s Diversity Index and SVM. Int J Signal Imaging Syst Eng Indersci 3(1):40–51CrossRef
19.
go back to reference Khuzi AM, Besar R, Zaki WW, Ahmad N (2009) Identification of masses in digital mammogram using gray level co-occurrence matrices. Biomed Imaging Interv J 5(3):e17 Khuzi AM, Besar R, Zaki WW, Ahmad N (2009) Identification of masses in digital mammogram using gray level co-occurrence matrices. Biomed Imaging Interv J 5(3):e17
20.
go back to reference Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall Inc, New Jersey, pp 76–142 Gonzalez RC, Woods RE (2002) Digital image processing. Prentice-Hall Inc, New Jersey, pp 76–142
21.
go back to reference Galloway MM (1975) Texture classification using gray level run length. Comput Graph Image Process 4:172–179CrossRef Galloway MM (1975) Texture classification using gray level run length. Comput Graph Image Process 4:172–179CrossRef
22.
go back to reference Tamura H, Mori S, Yamawaki T (1978) Texture features corresponding to visual perception. IEEE Trans Syst Man Cybernet Smc-8(6):460–473CrossRef Tamura H, Mori S, Yamawaki T (1978) Texture features corresponding to visual perception. IEEE Trans Syst Man Cybernet Smc-8(6):460–473CrossRef
23.
go back to reference Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of large image data. IEEE Trans Pattern Anal Mach Intell (Spec Issue Digit Libr) 18(8):837–842CrossRef Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of large image data. IEEE Trans Pattern Anal Mach Intell (Spec Issue Digit Libr) 18(8):837–842CrossRef
24.
go back to reference Rodrigues JF Jr, Traina AJM, Traina C Jr (2005) Enhanced visual evaluation of feature extractors for image mining. In: The 3rd ACS/IEEE international conference on computer systems and applications Rodrigues JF Jr, Traina AJM, Traina C Jr (2005) Enhanced visual evaluation of feature extractors for image mining. In: The 3rd ACS/IEEE international conference on computer systems and applications
25.
go back to reference Tahir MA, Bouridane A, Kurugollu F (2007) Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier. Pattern Recognit Lett 28:438–446CrossRef Tahir MA, Bouridane A, Kurugollu F (2007) Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier. Pattern Recognit Lett 28:438–446CrossRef
26.
go back to reference Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New YorkMATH Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New YorkMATH
27.
go back to reference Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRef Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238CrossRef
29.
go back to reference Sun Y, Lou X, Bao B (2011) A novel relief feature selection algorithm based on mean-variance model. J Inf Comput Sci 8(16):3921–3929 Sun Y, Lou X, Bao B (2011) A novel relief feature selection algorithm based on mean-variance model. J Inf Comput Sci 8(16):3921–3929
31.
go back to reference Suckling J et al (1994) ‘The mammographic image analysis society digital mammogram database. In: Exerpta Medica, international congress series 1069, pp 375–378 Suckling J et al (1994) ‘The mammographic image analysis society digital mammogram database. In: Exerpta Medica, international congress series 1069, pp 375–378
32.
go back to reference Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn J 53:23–69CrossRefMATH Robnik-Šikonja M, Kononenko I (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn J 53:23–69CrossRefMATH
Metadata
Title
Feature subset selection for classification of malignant and benign breast masses in digital mammography
Authors
Ramzi Chaieb
Karim Kalti
Publication date
09-11-2018
Publisher
Springer London
Published in
Pattern Analysis and Applications / Issue 3/2019
Print ISSN: 1433-7541
Electronic ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-018-0760-x

Other articles of this Issue 3/2019

Pattern Analysis and Applications 3/2019 Go to the issue

Premium Partner