Skip to main content
Top
Published in: Contemporary Problems of Ecology 3/2023

01-06-2023

Features of Organic Matter Transformation in the Active Layer of Permafrost in the Bureya River Basin

Authors: L. M. Kondratyeva, D. V. Andreeva, Z. N. Litvinenko, V. P. Shesterkin, E. M. Golubeva

Published in: Contemporary Problems of Ecology | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Climate change results in increased attention to factors determining the dynamics of biogeochemical processes in the active layer of biosphere (seasonally thawing/freezing soils) at the boundary with permafrost. There are geological, geomorphic, and weather conditions associated with atmospheric precipitation, which determine the differences in the segregation and the thawing depth of permafrost in various regions. The research area is the Bureya River Basin with discontinuous permafrost within unique landscape units: Mari. They are formed in swampy and poorly drained areas where the active soil layer is in contact with permafrost, and they exert a direct impact on the quality of surface waters. The results of the study include data on the chemical composition of water in tributaries of different orders; spectral characteristics of soluble organic matter (OM) in water extracts (WEs) of soils from different horizons of the active layer; and the assessment of the activity of microbial complexes in relation to humic substances (HSs), depending on the permafrost depth. The heterogeneity of landscapes is an important factor, influencing the transport of OM into watercourses. Microbial complexes of the active layer involved in the transformation of HSs play a decisive role in changing the composition of soluble OM. It is experimentally shown that temperature affects the qualitative composition of metabolism products of HSs, including the ratio of aliphatic and aromatic fragments to chromophoric groups responsible for the color of natural waters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bagard, M.L., Chabaux, F., Pokrovsky, O.S., Viers, J., Prokushkin, A.S., Stille, P., Rihs, S., Schmitt, A., and Dupré, B., Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 3335–3357.CrossRef Bagard, M.L., Chabaux, F., Pokrovsky, O.S., Viers, J., Prokushkin, A.S., Stille, P., Rihs, S., Schmitt, A., and Dupré, B., Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 3335–3357.CrossRef
2.
go back to reference Balcarczyk, K.L., Jones, J.B., Jaffe, R., and Maie, N., Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 2009, vol. 94, pp. 255–270.CrossRef Balcarczyk, K.L., Jones, J.B., Jaffe, R., and Maie, N., Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost, Biogeochemistry, 2009, vol. 94, pp. 255–270.CrossRef
3.
go back to reference Chen, J., Gu, B., LeBoeuf, E.J., Pan, H., and Dai, S., Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere, 2002, vol. 48, pp. 59–68.CrossRefPubMed Chen, J., Gu, B., LeBoeuf, E.J., Pan, H., and Dai, S., Spectroscopic characterization of the structural and functional properties of natural organic matter fractions, Chemosphere, 2002, vol. 48, pp. 59–68.CrossRefPubMed
4.
go back to reference Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z., Wu, L., Schuur, E.A.G., Tiedje, J.M., and Zhou, J., Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska, Mol. Ecol., 2015, vol. 24, no. 1, pp. 222–234.CrossRefPubMed Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, H., He, Z., Wu, L., Schuur, E.A.G., Tiedje, J.M., and Zhou, J., Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska, Mol. Ecol., 2015, vol. 24, no. 1, pp. 222–234.CrossRefPubMed
5.
go back to reference Exley, C.A., Biogeochemical cycle for aluminum?, J. Inorg. Biochem., 2003, vol. 397, pp. 1–7.CrossRef Exley, C.A., Biogeochemical cycle for aluminum?, J. Inorg. Biochem., 2003, vol. 397, pp. 1–7.CrossRef
6.
go back to reference Fukumasu, J., Poeplau, C., Coucheney, E., Jarvis, N., Kloff-el, T., Koestel, J., Katterer, T., Nimblad Svensson, D., Wetterlind, J., and Larsbo, M., Oxalate-extractable aluminum alongside carbon inputs may be a major determinant for organic carbon content in agricultural topsoils in humid continental climate, Geoderma, 2021, vol. 402, p. 115345.CrossRef Fukumasu, J., Poeplau, C., Coucheney, E., Jarvis, N., Kloff-el, T., Koestel, J., Katterer, T., Nimblad Svensson, D., Wetterlind, J., and Larsbo, M., Oxalate-extractable aluminum alongside carbon inputs may be a major determinant for organic carbon content in agricultural topsoils in humid continental climate, Geoderma, 2021, vol. 402, p. 115345.CrossRef
7.
go back to reference Hebsgaard, M.B., Phillips, M.J., and Willerslev, E., Geologically ancient DNA: fact or artefact?, Trends Microbiol., 2005, vol. 13, pp. 212–220.CrossRefPubMed Hebsgaard, M.B., Phillips, M.J., and Willerslev, E., Geologically ancient DNA: fact or artefact?, Trends Microbiol., 2005, vol. 13, pp. 212–220.CrossRefPubMed
8.
go back to reference Herndon, E.M., Yang, Z., Bargar, J., Janot, N., Regier, T.Z., Graham, D.E., Wullschleger, S.D., Gu, B., and Liang, L., Geochemical drivers of organic matter decomposition in arctic tundra soils, Biogeochemistry, 2015, vol. 126, pp. 397–414.CrossRef Herndon, E.M., Yang, Z., Bargar, J., Janot, N., Regier, T.Z., Graham, D.E., Wullschleger, S.D., Gu, B., and Liang, L., Geochemical drivers of organic matter decomposition in arctic tundra soils, Biogeochemistry, 2015, vol. 126, pp. 397–414.CrossRef
9.
go back to reference Hil’ko, S.L., Rogatko, M.I., Makarova, R.A., Semenova, R.G., Nevecherya, O.I., and Hil’ko, A.S., Mechanochemical synthesis of amino derivatives of humic acids and rheological characteristics of their surface layers at the liquid-gas interface, Vestn. Novgorod. Gos. Univ., Ser.: Tekh. Nauki, 2020, no. 5, pp.113–116. Hil’ko, S.L., Rogatko, M.I., Makarova, R.A., Semenova, R.G., Nevecherya, O.I., and Hil’ko, A.S., Mechanochemical synthesis of amino derivatives of humic acids and rheological characteristics of their surface layers at the liquid-gas interface, Vestn. Novgorod. Gos. Univ., Ser.: Tekh. Nauki, 2020, no. 5, pp.113–116.
10.
go back to reference Hugelius, G., Loisel, J., Chadburn, S., Jackson, R.B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M.B., Treat, C., Turetsky, M., Voigt, C., and Yu, Z., Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Proc. Natl. Acad. Sci., 2020, vol. 117, pp. 20438–20446.CrossRefPubMedPubMedCentral Hugelius, G., Loisel, J., Chadburn, S., Jackson, R.B., Jones, M., MacDonald, G., Marushchak, M., Olefeldt, D., Packalen, M., Siewert, M.B., Treat, C., Turetsky, M., Voigt, C., and Yu, Z., Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw, Proc. Natl. Acad. Sci., 2020, vol. 117, pp. 20438–20446.CrossRefPubMedPubMedCentral
11.
go back to reference Kumar, S., Organic chemistry, in Spectroscopy of Organic Compounds, Guru Nanak Dev Univ., 2006. Kumar, S., Organic chemistry, in Spectroscopy of Organic Compounds, Guru Nanak Dev Univ., 2006.
12.
go back to reference Lim, A.S., Loiko, S.V., and Pokrovsky, O.S., Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia, Geoderma, 2022, vol. 409, p. 115601.CrossRef Lim, A.S., Loiko, S.V., and Pokrovsky, O.S., Sizable pool of labile organic carbon in peat and mineral soils of permafrost peatlands, western Siberia, Geoderma, 2022, vol. 409, p. 115601.CrossRef
13.
go back to reference MacDonald, E.N., Tank, S.E., Kokelj, S.V., Froese, D.G., and Hutchins, R.H.S., Permafrost-derived dissolved organic matter composition varies across permafrost end-members in the western Canadian Arctic, Environ. Res. Lett., 2021, vol. 16, no. 2, p. e 024036. MacDonald, E.N., Tank, S.E., Kokelj, S.V., Froese, D.G., and Hutchins, R.H.S., Permafrost-derived dissolved organic matter composition varies across permafrost end-members in the western Canadian Arctic, Environ. Res. Lett., 2021, vol. 16, no. 2, p. e 024036.
14.
go back to reference Mordovin, A.M., Shesterkin, V.P., and Antonov, A.L., Reka Bureya: gidrologiya, gidrokhimiya, ikhtiofauna (The Bureya River: Hydrology, Hydrochemistry and Ichthyofauna), Habarovsk: Dal’nevost. Otd. Ross. Akad. Nauk, 2006. Mordovin, A.M., Shesterkin, V.P., and Antonov, A.L., Reka Bureya: gidrologiya, gidrokhimiya, ikhtiofauna (The Bureya River: Hydrology, Hydrochemistry and Ichthyofauna), Habarovsk: Dal’nevost. Otd. Ross. Akad. Nauk, 2006.
15.
go back to reference Murashova, E.G., Water-logging in the Amur region, in Stroitel’stvo i prirodoobustroistvo (Construction and Environmental Management), Makannikova, M.V., Ed., Blagoveshchensk: Dal’nevost. Gos. Agrar. Univ., 2016, pp. 72–75. Murashova, E.G., Water-logging in the Amur region, in Stroitel’stvo i prirodoobustroistvo (Construction and Environmental Management), Makannikova, M.V., Ed., Blagoveshchensk: Dal’nevost. Gos. Agrar. Univ., 2016, pp. 72–75.
16.
go back to reference Namsaraev, B.B., Barhutova, D.D., and Hasinov, V.V., Polevoi praktikum po vodnoi mikrobiologii i gidrokhimii. Metodicheskoe posobie (Field Workshop on Aquatic Microbiology and Hydrochemistry: Handbook), Ulan-Ude: Buryat. Gos. Univ., 2006. Namsaraev, B.B., Barhutova, D.D., and Hasinov, V.V., Polevoi praktikum po vodnoi mikrobiologii i gidrokhimii. Metodicheskoe posobie (Field Workshop on Aquatic Microbiology and Hydrochemistry: Handbook), Ulan-Ude: Buryat. Gos. Univ., 2006.
17.
go back to reference Namsaraev, B.B., Hahinov, V.V., and Turunhaev, A.V., Bog ecosystems of the isthmus of the Svyatoy Nos Peninsula, Geogr. Prir. Resur., 2009, no. 4, pp. 66–71. Namsaraev, B.B., Hahinov, V.V., and Turunhaev, A.V., Bog ecosystems of the isthmus of the Svyatoy Nos Peninsula, Geogr. Prir. Resur., 2009, no. 4, pp. 66–71.
18.
go back to reference Novorotskii, P.V., Long term changes of air temperature in the Bureya river basin, Geogr. Prir. Resur., 2013, no. 2, pp.118–124. Novorotskii, P.V., Long term changes of air temperature in the Bureya river basin, Geogr. Prir. Resur., 2013, no. 2, pp.118–124.
19.
go back to reference Olefeldt, D., Persson, A., and Turetsky, M.R., Influence of the permafrost boundary on dissolved organic matter characterstics in rivers within the Boreal and Taiga Plains of western Canada, Environ. Res. Lett., 2014, vol. 9, p. 035005.CrossRef Olefeldt, D., Persson, A., and Turetsky, M.R., Influence of the permafrost boundary on dissolved organic matter characterstics in rivers within the Boreal and Taiga Plains of western Canada, Environ. Res. Lett., 2014, vol. 9, p. 035005.CrossRef
20.
go back to reference Patzner, M.S., Mueller, C.W., Malusova, M., Baur, M., Nikeleit, V., Scholten, T., Hoeschen, C., Byrne, J.M., Borch, T., Kappler, A., and Bryce, C., Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw, Nat. Commun., 2020, vol. 11, pp. 1–11.CrossRef Patzner, M.S., Mueller, C.W., Malusova, M., Baur, M., Nikeleit, V., Scholten, T., Hoeschen, C., Byrne, J.M., Borch, T., Kappler, A., and Bryce, C., Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw, Nat. Commun., 2020, vol. 11, pp. 1–11.CrossRef
21.
go back to reference Perminova, I.V., From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology, Pure Appl. Chem., 2019, vol. 91, no. 5, pp. 851–864.CrossRef Perminova, I.V., From green chemistry and nature-like technologies towards ecoadaptive chemistry and technology, Pure Appl. Chem., 2019, vol. 91, no. 5, pp. 851–864.CrossRef
22.
go back to reference Pokrovsky, O.S., Manasypov, R.M., Loiko, S.V., Krickov, I.A., Kopysov, S.G., Kolesnichenko, L.G., Vorobyev, S.N., and Kirpotin, S.N., Trace element transport in western Siberian rivers across a permafrost gradient, Biogeosciences, 2016, vol. 13, pp. 1877–1900.CrossRef Pokrovsky, O.S., Manasypov, R.M., Loiko, S.V., Krickov, I.A., Kopysov, S.G., Kolesnichenko, L.G., Vorobyev, S.N., and Kirpotin, S.N., Trace element transport in western Siberian rivers across a permafrost gradient, Biogeosciences, 2016, vol. 13, pp. 1877–1900.CrossRef
23.
go back to reference Prater, I., Zubrzycki, S., Buegger, F., Zoor-Füllgraff, L.C., Angst, G., Dannenmann M., and Mueller, C.W., From fibrous plant residues to mineral-associated organic carbon - the fate of organic matter in Arctic permafrost soils, Biogeosciences, 2020, vol. 17, no. 13, pp. 3367–3383.CrossRef Prater, I., Zubrzycki, S., Buegger, F., Zoor-Füllgraff, L.C., Angst, G., Dannenmann M., and Mueller, C.W., From fibrous plant residues to mineral-associated organic carbon - the fate of organic matter in Arctic permafrost soils, Biogeosciences, 2020, vol. 17, no. 13, pp. 3367–3383.CrossRef
24.
go back to reference Quinton, W.L., Hayashi, M., and Chasmer, L.E., Peatland hydrology of discontinuous permafrost in the Northwest Territories: overview and synthesis, Can. Water Resour. J., 2009, vol. 34, pp. 311–328CrossRef Quinton, W.L., Hayashi, M., and Chasmer, L.E., Peatland hydrology of discontinuous permafrost in the Northwest Territories: overview and synthesis, Can. Water Resour. J., 2009, vol. 34, pp. 311–328CrossRef
25.
go back to reference Raudina, T.V., Loiko, S.V., Lim, A.G., Krickov, I.V., Shirokova, L.S., Istigechev, G.I., Kuzmina, D.M., Kulizhsky, S.P., Vorobyev, S.N., and Pokrovsky, O.S., Dissolved organic carbon and major and trace elements in peat pore water of sporadic, discontinuous, and continuous permafrost zones of western Siberia, Biogeosciences, 2017, vol. 14, no. 14, pp. 3561–3584.CrossRef Raudina, T.V., Loiko, S.V., Lim, A.G., Krickov, I.V., Shirokova, L.S., Istigechev, G.I., Kuzmina, D.M., Kulizhsky, S.P., Vorobyev, S.N., and Pokrovsky, O.S., Dissolved organic carbon and major and trace elements in peat pore water of sporadic, discontinuous, and continuous permafrost zones of western Siberia, Biogeosciences, 2017, vol. 14, no. 14, pp. 3561–3584.CrossRef
26.
go back to reference Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V., and Gilichinsky, D., Microbial life in permafrost, Adv. Space Res., 2004, vol. 33, pp. 1215–1221.CrossRefPubMed Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V., and Gilichinsky, D., Microbial life in permafrost, Adv. Space Res., 2004, vol. 33, pp. 1215–1221.CrossRefPubMed
27.
go back to reference Roehm, C.L., Giesler, R., and Karlsson, J., Bioavailability of terrestrial organic carbon to lake bacteria: the case of a degrading permafrost mire complex, J. Geophys. Res., 2009, vol. 114, no. 3, p. G03006.CrossRef Roehm, C.L., Giesler, R., and Karlsson, J., Bioavailability of terrestrial organic carbon to lake bacteria: the case of a degrading permafrost mire complex, J. Geophys. Res., 2009, vol. 114, no. 3, p. G03006.CrossRef
28.
go back to reference Schlesinger, W., Biogeochemistry. An Analysis of Global Change, Acad. Press, 2013. Schlesinger, W., Biogeochemistry. An Analysis of Global Change, Acad. Press, 2013.
29.
go back to reference Schumann, R., Schiewer, U., Karsten, U., and Rieling, T., Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity, Aquat. Microb. Ecol., 2003, vol. 32, pp. 137–150.CrossRef Schumann, R., Schiewer, U., Karsten, U., and Rieling, T., Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity, Aquat. Microb. Ecol., 2003, vol. 32, pp. 137–150.CrossRef
30.
go back to reference Schuur, E.A.G., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., et al., Climate change and the permafrost carbon feedback, Nature, 2015, vol. 520, no. 7546, pp. 171–179.CrossRefPubMed Schuur, E.A.G., McGuire, A.D., Schadel, C., Grosse, G., Harden, J.W., Hayes, D.J., et al., Climate change and the permafrost carbon feedback, Nature, 2015, vol. 520, no. 7546, pp. 171–179.CrossRefPubMed
31.
go back to reference Shamov, V.V., Onishi, T., and Kulakov, V.V., Dissolved iron runoff in Amur basin rivers in the late XX century, Water Resour., 2014, vol. 41, pp. 201–209.CrossRef Shamov, V.V., Onishi, T., and Kulakov, V.V., Dissolved iron runoff in Amur basin rivers in the late XX century, Water Resour., 2014, vol. 41, pp. 201–209.CrossRef
32.
go back to reference Shesterkin, V.P., Hydrochemistry of the Tyrma River, Reg. Probl., 2021, vol. 24, nos. 2–3, pp. 47–51. Shesterkin, V.P., Hydrochemistry of the Tyrma River, Reg. Probl., 2021, vol. 24, nos. 2–3, pp. 47–51.
33.
go back to reference Shirshova, L.T., Gilichinskii, D.A., Ostroumova, N.V., and Ermolaev, A.M., Application of spectrophotometry for quantificationof humic substances in the permafrost sediments, Kriosfera Zemli, 2015, vol. 19, no. 4, pp. 107–113. Shirshova, L.T., Gilichinskii, D.A., Ostroumova, N.V., and Ermolaev, A.M., Application of spectrophotometry for quantificationof humic substances in the permafrost sediments, Kriosfera Zemli, 2015, vol. 19, no. 4, pp. 107–113.
34.
go back to reference Shirokova, L.S., Chupakov, A.V., Zabelina, S.A., Neverova, N.V., Payandi-Rolland, D., Causserand, C., Karlsson, J., and Pokrovsky, O.S., Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation, Biogeosciences, 2019, vol. 16, pp. 2511–2526.CrossRef Shirokova, L.S., Chupakov, A.V., Zabelina, S.A., Neverova, N.V., Payandi-Rolland, D., Causserand, C., Karlsson, J., and Pokrovsky, O.S., Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio- and photodegradation, Biogeosciences, 2019, vol. 16, pp. 2511–2526.CrossRef
35.
go back to reference Steven, B., Briggs, G., Mckay, C.P., Pollard, W.H., Greer, C.W., and Whyte, L.G., Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods, FEMS Microbiol. Ecol., 2007, vol. 59, pp. 513–523.CrossRefPubMed Steven, B., Briggs, G., Mckay, C.P., Pollard, W.H., Greer, C.W., and Whyte, L.G., Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods, FEMS Microbiol. Ecol., 2007, vol. 59, pp. 513–523.CrossRefPubMed
36.
go back to reference Stolpe, B., Guo, L., Shiller, A.M., and Aiken, G.R., Abundance, size distribution and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field flow fractionation and ICP-MS, Geochim. Cosmochim. Acta, 2013, vol. 105, pp. 221–239.CrossRef Stolpe, B., Guo, L., Shiller, A.M., and Aiken, G.R., Abundance, size distribution and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field flow fractionation and ICP-MS, Geochim. Cosmochim. Acta, 2013, vol. 105, pp. 221–239.CrossRef
37.
go back to reference Tadini, A.M., Moreira, A.B., and Bisinoti, M.C., Fractionation of aquatic humic substances and dynamic of chromium species in an aquatic body influenced by sugarcane cultivation, J. Braz. Chem. Soc., 2014, vol. 25, no. 1. Tadini, A.M., Moreira, A.B., and Bisinoti, M.C., Fractionation of aquatic humic substances and dynamic of chromium species in an aquatic body influenced by sugarcane cultivation, J. Braz. Chem. Soc., 2014, vol. 25, no. 1.
38.
go back to reference Tashiro, Y., Yoh, M., Shiraiwa, T., Onishi, T., Shesterkin, V., and Kim, V., Seasonal variations of dissolved iron concentration in active layer and rivers in permafrost areas, Russian Far East, Water, 2020, no. 12, p. 2579. https://doi.org/10.3390/w12092579 Tashiro, Y., Yoh, M., Shiraiwa, T., Onishi, T., Shesterkin, V., and Kim, V., Seasonal variations of dissolved iron concentration in active layer and rivers in permafrost areas, Russian Far East, Water, 2020, no. 12, p. 2579. https://​doi.​org/​10.​3390/​w12092579
39.
go back to reference Vishnivetskaya, T., Petrova, M.A., Urbance, J., Ponder, M., Moyer, C.L., Gilichinsky, D.A., and Tiedje, J.M., Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods, Astrobiology, 2006, vol. 6, pp. 400–414.CrossRefPubMed Vishnivetskaya, T., Petrova, M.A., Urbance, J., Ponder, M., Moyer, C.L., Gilichinsky, D.A., and Tiedje, J.M., Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods, Astrobiology, 2006, vol. 6, pp. 400–414.CrossRefPubMed
40.
go back to reference Wauthy, M., Rautio, M., Christoffersen, K.S., Forsström L., Laurion, I., Mariash, H.L., Peura S., and Vincent, W.F., Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw, Limnol. Oceanogr. Lett., 2018, vol. 3, no. 3, pp. 186–198.CrossRef Wauthy, M., Rautio, M., Christoffersen, K.S., Forsström L., Laurion, I., Mariash, H.L., Peura S., and Vincent, W.F., Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw, Limnol. Oceanogr. Lett., 2018, vol. 3, no. 3, pp. 186–198.CrossRef
41.
go back to reference Wickland, K.P., Waldrop, M.P., Aiken, G.R., Koch, J.C., Jorgenson, M.T., and Striegl, R.G., Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska, Environ. Res. Lett., 2018, vol. 13, p. e065011.CrossRef Wickland, K.P., Waldrop, M.P., Aiken, G.R., Koch, J.C., Jorgenson, M.T., and Striegl, R.G., Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska, Environ. Res. Lett., 2018, vol. 13, p. e065011.CrossRef
42.
go back to reference Zhang, R., Leiviskä, T., Taskila, S., and Tanskanen, J., Iron-loaded Sphagnum moss extract residue for phosphate removal, J. Environ. Manage., 2018, vol. 218, pp. 271–279.CrossRefPubMed Zhang, R., Leiviskä, T., Taskila, S., and Tanskanen, J., Iron-loaded Sphagnum moss extract residue for phosphate removal, J. Environ. Manage., 2018, vol. 218, pp. 271–279.CrossRefPubMed
Metadata
Title
Features of Organic Matter Transformation in the Active Layer of Permafrost in the Bureya River Basin
Authors
L. M. Kondratyeva
D. V. Andreeva
Z. N. Litvinenko
V. P. Shesterkin
E. M. Golubeva
Publication date
01-06-2023
Publisher
Pleiades Publishing
Published in
Contemporary Problems of Ecology / Issue 3/2023
Print ISSN: 1995-4255
Electronic ISSN: 1995-4263
DOI
https://doi.org/10.1134/S1995425523030083

Other articles of this Issue 3/2023

Contemporary Problems of Ecology 3/2023 Go to the issue