Skip to main content
Top

2020 | OriginalPaper | Chapter

Federated Learning for Open Banking

Authors : Guodong Long, Yue Tan, Jing Jiang, Chengqi Zhang

Published in: Federated Learning

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Open banking enables individual customers to own their banking data, which provides fundamental support for the boosting of a new ecosystem of data marketplaces and financial services. In the near future, it is foreseeable to have decentralized data ownership in the finance sector using federated learning. This is a just-in-time technology that can learn intelligent models in a decentralized training manner. The most attractive aspect of federated learning is its ability to decompose model training into a centralized server and distributed nodes without collecting private data. This kind of decomposed learning framework has great potential to protect users’ privacy and sensitive data. Therefore, federated learning combines naturally with an open banking data marketplaces. This chapter will discuss the possible challenges for applying federated learning in the context of open banking, and the corresponding solutions have been explored as well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abadi, M., et al.: Deep learning with differential privacy. In: The 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016) Abadi, M., et al.: Deep learning with differential privacy. In: The 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)
2.
3.
go back to reference Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning bounds for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 129–136 (2008) Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning bounds for domain adaptation. In: Advances in Neural Information Processing Systems, pp. 129–136 (2008)
4.
go back to reference Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: The 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017) Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: The 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)
5.
go back to reference Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on Non-IID data. arXiv:2004.11791 (2020) Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on Non-IID data. arXiv:​2004.​11791 (2020)
6.
go back to reference Brodsky, L., Oakes, L.: Data Sharing and Open Banking. McKinsey Company, New York (2017) Brodsky, L., Oakes, L.: Data Sharing and Open Banking. McKinsey Company, New York (2017)
7.
go back to reference Chesbrough, H., Vanhaverbeke, W., West, J.: New Frontiers in Open Innovation. OUP Oxford, Oxford, (2014) Chesbrough, H., Vanhaverbeke, W., West, J.: New Frontiers in Open Innovation. OUP Oxford, Oxford, (2014)
8.
go back to reference Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from Technology. Harvard Business Press, Brighton (2003) Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from Technology. Harvard Business Press, Brighton (2003)
13.
14.
go back to reference Open Banking Working Group and others: The open banking standard. Technical report, working paper, Open Data Institute (2018) Open Banking Working Group and others: The open banking standard. Technical report, working paper, Open Data Institute (2018)
18.
go back to reference Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under Non-IID private data. arXiv:1811.11479 (2018) Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., Kim, S.L.: Communication-efficient on-device machine learning: federated distillation and augmentation under Non-IID private data. arXiv:​1811.​11479 (2018)
19.
go back to reference Jiang, J., Ji, S., Long, G.: Decentralized knowledge acquisition for mobile internet applications. World Wide Web, pp. 1–17 (2020) Jiang, J., Ji, S., Long, G.: Decentralized knowledge acquisition for mobile internet applications. World Wide Web, pp. 1–17 (2020)
20.
go back to reference Kang, J., Xiong, Z., Niyato, D., Xie, S., Zhang, J.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)CrossRef Kang, J., Xiong, Z., Niyato, D., Xie, S., Zhang, J.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)CrossRef
21.
23.
go back to reference Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv:1812.06127 (2018) Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv:​1812.​06127 (2018)
24.
go back to reference Liang, P.P., Liu, T., Ziyin, L., Salakhutdinov, R., Morency, L.P.: Think locally, act globally: federated learning with local and global representations. arXiv:2001.01523 (2020) Liang, P.P., Liu, T., Ziyin, L., Salakhutdinov, R., Morency, L.P.: Think locally, act globally: federated learning with local and global representations. arXiv:​2001.​01523 (2020)
25.
go back to reference Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. arXiv:2002.10619 (2020) Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. arXiv:​2002.​10619 (2020)
26.
go back to reference Mirshghallah, F., Taram, M., Vepakomma, P., Singh, A., Raskar, R., Esmaeilzadeh, H.: Privacy in deep learning: a survey. arXiv:2004.12254 (2020) Mirshghallah, F., Taram, M., Vepakomma, P., Singh, A., Raskar, R., Esmaeilzadeh, H.: Privacy in deep learning: a survey. arXiv:​2004.​12254 (2020)
28.
go back to reference Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)CrossRef Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)CrossRef
29.
go back to reference Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., Ilie-Zudor, E.: Chained anomaly detection models for federated learning: an intrusion detection case study. Appl. Sci. 8(12), 2663 (2018)CrossRef Preuveneers, D., Rimmer, V., Tsingenopoulos, I., Spooren, J., Joosen, W., Ilie-Zudor, E.: Chained anomaly detection models for federated learning: an intrusion detection case study. Appl. Sci. 8(12), 2663 (2018)CrossRef
31.
go back to reference Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multi-task optimization under privacy constraints. arXiv:1910.01991 (2019) Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multi-task optimization under privacy constraints. arXiv:​1910.​01991 (2019)
32.
go back to reference Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: The 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015) Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: The 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)
33.
go back to reference Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: International Conference on Learning Representations (2020) Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. In: International Conference on Learning Representations (2020)
35.
go back to reference Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)CrossRef Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)CrossRef
36.
go back to reference Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)CrossRef Yang, Q., Liu, Y., Cheng, Y., Kang, Y., Chen, T., Yu, H.: Federated learning. Synth. Lect. Artif. Intell. Mach. Learn. 13(3), 1–207 (2019)CrossRef
38.
go back to reference Yu, Z., et al.: Federated learning based proactive content caching in edge computing. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018) Yu, Z., et al.: Federated learning based proactive content caching in edge computing. In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)
39.
go back to reference Zhan, Y., Li, P., Qu, Z., Zeng, D., Guo, S.: A learning-based incentive mechanism for federated learning. IEEE Internet Things J. (2020) Zhan, Y., Li, P., Qu, Z., Zeng, D., Guo, S.: A learning-based incentive mechanism for federated learning. IEEE Internet Things J. (2020)
Metadata
Title
Federated Learning for Open Banking
Authors
Guodong Long
Yue Tan
Jing Jiang
Chengqi Zhang
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-63076-8_17

Premium Partner