Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

15-09-2022

FENS: Fog-Enabled Network Slicing in SDN/NFV-Based IoV

Authors: Karima Smida, Hajer Tounsi, Mounir Frikha, Ye-Qiong Song

Published in: Wireless Personal Communications

Login to get access
share
SHARE

Abstract

Modern vehicular networks support various services with variable Quality of Service (QoS) constraints. Two major classes of vehicular applications are identified, namely, safety and non safety services. The former are delay-sensitive while the latter depends mainly on throughput. However, many regions are suffering from a shortage of network resources while an increasing number of vehicle users need to be satisfied. Thus, the design of efficient allocation schemes of available resources is necessary. In this regard, one of the promising technologies is network slicing, a next-generation 5G perspective, that creates multiple logical networks on a common physical infrastructure. This paradigm enables efficient exploitation of shared physical infrastructure resources to meet the diverse needs of different use cases. In this paper we design a framework for a road-state-based and adaptive network slicing scheme for vehicular networks. The goal is to temporarily prioritize emergency traffic in incident situations while maintaining acceptable QoS for non-safety related sevices in a resource constrained environment. Our proposal adds to native slicing the ability to take into account road conditions besides of customer’s specifications in terms of QoS. Moreover, our adaptive scheme makes it possible to judiciously exploit the available resources even if they are limited according to the rigor of the application. Software defined networking (SDN), network function virtualization and fog computing paradigms are the key enablers of our proposed solution. We implemented the proposed architecture based on the Mininet-Wifi emulator to create a vehicular network, the ONOS SDN controller, and the network slicing tool OpenVirteX. Experimental results prove that our suggested adaptive resource allocation scheme enhances the performance of the emergency services in terms of end-to-end delay while keeping acceptable throughput for non-safety traffic in stressed situations.
Literature
1.
go back to reference Zhuang, W., Ye, Q., Lyu, F., Cheng, N., & Ren, J. (2020). SDN/NFV-empowered future IoV with enhanced communication, computing, and caching. Proceedings of the IEEE, 108, 274–291. CrossRef Zhuang, W., Ye, Q., Lyu, F., Cheng, N., & Ren, J. (2020). SDN/NFV-empowered future IoV with enhanced communication, computing, and caching. Proceedings of the IEEE, 108, 274–291. CrossRef
4.
go back to reference Al-Heety, S. O., Zakaria, Z., Ismail, M., Shakir, M. M., Alani, S., & Alsariera, H. (2020). A comprehensive survey: Benefits, services, recent works, challenges, security and use cases for SDN-VANET. IEEE Access, 8, 91028–91047. CrossRef Al-Heety, S. O., Zakaria, Z., Ismail, M., Shakir, M. M., Alani, S., & Alsariera, H. (2020). A comprehensive survey: Benefits, services, recent works, challenges, security and use cases for SDN-VANET. IEEE Access, 8, 91028–91047. CrossRef
6.
go back to reference Subedi, P., Alsadoon, A., Prasad, P. W., Rehman, S., Giweli, N., Imran, M., & Arif, S. (2021). Network slicing: A next generation 5G perspective. EURASIP Journal on Wireless Communications and Networking, 2021, 102. CrossRef Subedi, P., Alsadoon, A., Prasad, P. W., Rehman, S., Giweli, N., Imran, M., & Arif, S. (2021). Network slicing: A next generation 5G perspective. EURASIP Journal on Wireless Communications and Networking, 2021, 102. CrossRef
7.
go back to reference Campolo, C., Molinaro, A., Iera, A., & Menichella, F. (2017). 5G network slicing for vehicle-to-everything services. IEEE Wireless Communications, 24, 38–45. CrossRef Campolo, C., Molinaro, A., Iera, A., & Menichella, F. (2017). 5G network slicing for vehicle-to-everything services. IEEE Wireless Communications, 24, 38–45. CrossRef
8.
go back to reference Fossati, F., Moretti, S., Perny, P., & Secci, S. (2020). Multi-resource allocation for network slicing. IEEE/ACM Transactions on Networking, 28, 1311–1324. CrossRef Fossati, F., Moretti, S., Perny, P., & Secci, S. (2020). Multi-resource allocation for network slicing. IEEE/ACM Transactions on Networking, 28, 1311–1324. CrossRef
10.
go back to reference Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., & Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–330. CrossRef Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., & Jue, J. P. (2019). All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–330. CrossRef
11.
go back to reference Baktayan, A., Algabri, M., & Alhomdy, S. (2018). Fog computing for network slicing in 5G networks: An overview. Journal of Telecommunications System & Management, 172, 2167–0919. Baktayan, A., Algabri, M., & Alhomdy, S. (2018). Fog computing for network slicing in 5G networks: An overview. Journal of Telecommunications System & Management, 172, 2167–0919.
14.
go back to reference Campolo, C., Dos Reis Fontes, R., Molinaro, A., Esteve Rothenberg, C., & Iera, A. (2018). Slicing on the road: Enabling the automotive vertical through 5G network softwarization. Sensors, 18, 4435. CrossRef Campolo, C., Dos Reis Fontes, R., Molinaro, A., Esteve Rothenberg, C., & Iera, A. (2018). Slicing on the road: Enabling the automotive vertical through 5G network softwarization. Sensors, 18, 4435. CrossRef
15.
go back to reference Al-khatib, A., Khelil, A., & Balfaqih, M. (2021). Bandwidth slicing with reservation capability and application priority awareness for future vehicular networks. Al-khatib, A., Khelil, A., & Balfaqih, M. (2021). Bandwidth slicing with reservation capability and application priority awareness for future vehicular networks.
17.
go back to reference Han, S. Introduce to OpenVirteX. (07:40:21 UTC). Han, S. Introduce to OpenVirteX. (07:40:21 UTC).
18.
go back to reference Blenk, A., Basta, A., Reisslein, M., & Kellerer, W. (2016). Survey on network virtualization hypervisors for software defined networking. IEEE Communications Surveys and Tutorials, 18, 655–685. CrossRef Blenk, A., Basta, A., Reisslein, M., & Kellerer, W. (2016). Survey on network virtualization hypervisors for software defined networking. IEEE Communications Surveys and Tutorials, 18, 655–685. CrossRef
19.
go back to reference Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Snow, W., & Parulkar, G. (2014). OpenVirteX: A network hypervisor. Al-Shabibi, A., De Leenheer, M., Gerola, M., Koshibe, A., Snow, W., & Parulkar, G. (2014). OpenVirteX: A network hypervisor.
20.
go back to reference Dilek, S., Irgan, K., Guzel, M., Ozdemir, S., Baydere, S., & Charnsripinyo, C. (2022). QoS-aware IoT networks and protocols: A comprehensive survey. International Journal of Communication Systems, 35, e5156. CrossRef Dilek, S., Irgan, K., Guzel, M., Ozdemir, S., Baydere, S., & Charnsripinyo, C. (2022). QoS-aware IoT networks and protocols: A comprehensive survey. International Journal of Communication Systems, 35, e5156. CrossRef
21.
go back to reference Noor-A-Rahim, M., Liu, Z., Lee, H., Ali, G. M., Pesch, D., & Xiao, P. (2020). A survey on resource allocation in vehicular networks. arXiv:​1909.​13587 [cs, eess, math] Noor-A-Rahim, M., Liu, Z., Lee, H., Ali, G. M., Pesch, D., & Xiao, P. (2020). A survey on resource allocation in vehicular networks. arXiv:​1909.​13587 [cs, eess, math]
22.
go back to reference Lei, F., Zi, Y., Li, W., Zhou, F., & Kadoch, M. (2020). Dynamic resource allocation with RAN slicing and scheduling for uRLLC and eMBB hybrid services. IEEE Access, 8, 34538–34551. CrossRef Lei, F., Zi, Y., Li, W., Zhou, F., & Kadoch, M. (2020). Dynamic resource allocation with RAN slicing and scheduling for uRLLC and eMBB hybrid services. IEEE Access, 8, 34538–34551. CrossRef
24.
go back to reference Abhishek, R., Zhao, S., & Medhi, D. (2016). SPArTaCuS: Service priority adaptiveness for emergency traffic in smart cities using software-defined networking. Abhishek, R., Zhao, S., & Medhi, D. (2016). SPArTaCuS: Service priority adaptiveness for emergency traffic in smart cities using software-defined networking.
30.
go back to reference Dos Reis Fontes, R., Campolo, C., Esteve Rothenberg, C., & Molinaro, A. (2017). From theory to experimental evaluation: Resource management in software-defined vehicular networks. IEEE Access, 5, 3069–3076. CrossRef Dos Reis Fontes, R., Campolo, C., Esteve Rothenberg, C., & Molinaro, A. (2017). From theory to experimental evaluation: Resource management in software-defined vehicular networks. IEEE Access, 5, 3069–3076. CrossRef
31.
go back to reference Kaul, A., Obraczka, K., Santos, M., Rothenberg, C., & Turletti, T. (2017). Dynamically distributed network control for message dissemination in ITS. In IEEE/ACM DS-RT 2017-21st International symposium on distributed simulation and real time applications. Kaul, A., Obraczka, K., Santos, M., Rothenberg, C., & Turletti, T. (2017). Dynamically distributed network control for message dissemination in ITS. In IEEE/ACM DS-RT 2017-21st International symposium on distributed simulation and real time applications.
Metadata
Title
FENS: Fog-Enabled Network Slicing in SDN/NFV-Based IoV
Authors
Karima Smida
Hajer Tounsi
Mounir Frikha
Ye-Qiong Song
Publication date
15-09-2022
Publisher
Springer US
Published in
Wireless Personal Communications
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-10038-z