Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 5/2023

12-12-2022 | Original Article

Few-shot learning based on enhanced pseudo-labels and graded pseudo-labeled data selection

Authors: Kang Wang, Xuesong Wang, Yuhu Cheng

Published in: International Journal of Machine Learning and Cybernetics | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Pseudo-labeled data is used to solve the data shortage in few-shot learning, in which the quality of pseudo-labels and pseudo-labeled data selection determine the classification performance. In order to obtain the enhanced pseudo-labels, we used diverse inputs to encourage the label network to learn invariant and robust representations, improving the generalization ability. Simultaneously, the depthwise over-parameterized convolutional layer and group residual connection with shared parameters accelerate the network training and overcome the time-consuming caused by diverse inputs. Then, the graded pseudo-labeled data selection is proposed to determine various quantities of pseudo-labeled data based on the label network’s performance level, which improves the classification accuracy and avoids the high consumption caused by using all the pseudo-labeled data. Finally, we solved the data shortage in food recognition with the proposed method. The experiments show that our method has better classification accuracy and generalization ability in few-shot benchmark datasets and food recognition with few samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Gao F, Cai L, Yang Z, Song S, Wu C (2022) Multi-distance metric network for few-shot learning. Int J Mach Learn Cybern 13(9):2495–2506CrossRef Gao F, Cai L, Yang Z, Song S, Wu C (2022) Multi-distance metric network for few-shot learning. Int J Mach Learn Cybern 13(9):2495–2506CrossRef
2.
go back to reference Wang K, Wang X, Zhang T, Cheng Y (2022) Few-shot learning with deep balanced network and acceleration strategy. Int J Mach Learn Cybern 13(1):133–144CrossRef Wang K, Wang X, Zhang T, Cheng Y (2022) Few-shot learning with deep balanced network and acceleration strategy. Int J Mach Learn Cybern 13(1):133–144CrossRef
3.
go back to reference Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the International Conference on Machine Learning (ICML), Sydney, AUSTRALIA, pp 1126–1135 Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the International Conference on Machine Learning (ICML), Sydney, AUSTRALIA, pp 1126–1135
6.
go back to reference Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap T (2016) Meta-learning with memory-augmented neural netowrks. In: Proceedings of the International Conference on Machine Learning (ICML), New York City, NY, USA, pp 1842–1850 Santoro A, Bartunov S, Botvinick M, Wierstra D, Lillicrap T (2016) Meta-learning with memory-augmented neural netowrks. In: Proceedings of the International Conference on Machine Learning (ICML), New York City, NY, USA, pp 1842–1850
7.
go back to reference Munkhdalai T, Yuan X, Mehri, S et al (2018) Rapid adaptation with conditionally shifted neurons. In: Proceedings of the International Conference on Machine Learning (ICML), Stockholm, SWEDEN, pp 3661–3670 Munkhdalai T, Yuan X, Mehri, S et al (2018) Rapid adaptation with conditionally shifted neurons. In: Proceedings of the International Conference on Machine Learning (ICML), Stockholm, SWEDEN, pp 3661–3670
9.
go back to reference Li S, Chen D, Liu B, et al (2019) Memory-based neighbourhood embedding for visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Koera (South), pp 6101–6110 Li S, Chen D, Liu B, et al (2019) Memory-based neighbourhood embedding for visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Koera (South), pp 6101–6110
10.
go back to reference Vinyals O, Blundell C, Lillicrap T, et al (2016) Matching networks for one shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona, SPAIN, pp 3630–3638 Vinyals O, Blundell C, Lillicrap T, et al (2016) Matching networks for one shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona, SPAIN, pp 3630–3638
11.
go back to reference Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, pp 4077–4087 Snell J, Swersky K, Zemel RS (2017) Prototypical networks for few-shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, pp 4077–4087
12.
go back to reference Sung F, Yang Y, Zhang L, et al (2018) Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp 1199–1208 Sung F, Yang Y, Zhang L, et al (2018) Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp 1199–1208
13.
go back to reference Oreshkin BN, Rodriguez P, Lacoste A (2018) Tadam: task dependent adaptive metric for improved few-shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montréal , CANADA, pp 719–729 Oreshkin BN, Rodriguez P, Lacoste A (2018) Tadam: task dependent adaptive metric for improved few-shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montréal , CANADA, pp 719–729
14.
go back to reference Antoniou A, Storkey A, Edwards H (2017) Data augmentation generative adversarial networks. arXiv: 1711.04340 Antoniou A, Storkey A, Edwards H (2017) Data augmentation generative adversarial networks. arXiv: 1711.04340
15.
go back to reference Zhang R, Che T, Ghahramani Z et al (2018) Metagan: an adversarial approach to few-shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montréal, CANADA, pp 2371–2380 Zhang R, Che T, Ghahramani Z et al (2018) Metagan: an adversarial approach to few-shot learning. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS), Montréal, CANADA, pp 2371–2380
17.
go back to reference Xu W, Li W (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46(2):366–379MathSciNetCrossRef Xu W, Li W (2016) Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans Cybern 46(2):366–379MathSciNetCrossRef
18.
go back to reference Li K, Zhang Y, Li K, Fu, Y (2020) Adversarial feature hallucination networks for few-shot learning. arXiv: 2003.13193 Li K, Zhang Y, Li K, Fu, Y (2020) Adversarial feature hallucination networks for few-shot learning. arXiv: 2003.13193
19.
go back to reference Kim J, Kim H, Kim G (2020) Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning. In: Proceedings of the European Conference on Computer Vision (ECCV), ELECTR NETWORK, pp 599–6175 Kim J, Kim H, Kim G (2020) Model-agnostic boundary-adversarial sampling for test-time generalization in few-shot learning. In: Proceedings of the European Conference on Computer Vision (ECCV), ELECTR NETWORK, pp 599–6175
20.
go back to reference Chen Z, Fu Y, Wang Y, Ma L, Liu W, Hebert M (2019) Image deformation meta-networks for one-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 8672–8681 Chen Z, Fu Y, Wang Y, Ma L, Liu W, Hebert M (2019) Image deformation meta-networks for one-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 8672–8681
21.
go back to reference Zhang H, Zhang J, Koniusz P (2019) Few-shot learning via saliency-guided hallucination of samples. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 2765–2774 Zhang H, Zhang J, Koniusz P (2019) Few-shot learning via saliency-guided hallucination of samples. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 2765–2774
22.
go back to reference Wang Y, Xu C, Liu C, Zhang L, Fu Y (2020) Instance credibility inference for few-shot learning. arXiv: 2003.11853 Wang Y, Xu C, Liu C, Zhang L, Fu Y (2020) Instance credibility inference for few-shot learning. arXiv: 2003.11853
23.
go back to reference Lee K, Lee K, Shin J, Lee H (2019) Network randomization: a simple technique for generalization in deep reinforcement learning. arXiv: 1910.05396v3 Lee K, Lee K, Shin J, Lee H (2019) Network randomization: a simple technique for generalization in deep reinforcement learning. arXiv: 1910.05396v3
24.
go back to reference Cao J, Li Y, Sun M, et al (2020) DO-Conv: depthwise over-parameterized convolutional layer. arXiv: 2006.12030 Cao J, Li Y, Sun M, et al (2020) DO-Conv: depthwise over-parameterized convolutional layer. arXiv: 2006.12030
25.
go back to reference Wang X, Yu S (2020) Tied block convolution: leaner and better CNNs with shared thinner filters. arXiv: 2009.12021 Wang X, Yu S (2020) Tied block convolution: leaner and better CNNs with shared thinner filters. arXiv: 2009.12021
26.
go back to reference Bertinetto L, Henriques J, Torr P, Vedaldi A (2018) Meta-learning with differentiable closed-form solvers. arXiv: 1805.08136 Bertinetto L, Henriques J, Torr P, Vedaldi A (2018) Meta-learning with differentiable closed-form solvers. arXiv: 1805.08136
27.
go back to reference Ren M, Triantafillou E, Ravi S, Snell J, Swersky K, Tenenbaum J, Larochelle H, Zemel R (2018) Meta-learning for semi-supervised few-shot classification. arXiv: 1803.00676 Ren M, Triantafillou E, Ravi S, Snell J, Swersky K, Tenenbaum J, Larochelle H, Zemel R (2018) Meta-learning for semi-supervised few-shot classification. arXiv: 1803.00676
28.
go back to reference Liu Y, Lee J, Park M, Kim S, Yang E, Hwang S, Yang L (2018) Learning to propagate labels: transductive propagation network for few-shot learning. arXiv: 1805.10002 Liu Y, Lee J, Park M, Kim S, Yang E, Hwang S, Yang L (2018) Learning to propagate labels: transductive propagation network for few-shot learning. arXiv: 1805.10002
29.
go back to reference Simon C, Koniusz P, Nock R, Harandi M (2020) Adaptive subspaces for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), ELECTR NETWORK, pp 4135–4144 Simon C, Koniusz P, Nock R, Harandi M (2020) Adaptive subspaces for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), ELECTR NETWORK, pp 4135–4144
30.
go back to reference Lee H, Hwang S, Shin J (2019) Self-supervised label augmentation via input transformations. arXiv: 1910.05872 Lee H, Hwang S, Shin J (2019) Self-supervised label augmentation via input transformations. arXiv: 1910.05872
31.
go back to reference Khrulkov V, Mirvakhabova L, Ustinova E, Oseledets I, Lempitsky V. (2019) Hyperbolic image embeddings. arXiv: 1904.02239 Khrulkov V, Mirvakhabova L, Ustinova E, Oseledets I, Lempitsky V. (2019) Hyperbolic image embeddings. arXiv: 1904.02239
32.
go back to reference Luo Q, Wang L, Lv J, Xiang S, Pan C (2021) Few-shot learning via feature hallucination with variational inference. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), ELECTR NETWORK, pp 3962–3971 Luo Q, Wang L, Lv J, Xiang S, Pan C (2021) Few-shot learning via feature hallucination with variational inference. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), ELECTR NETWORK, pp 3962–3971
33.
go back to reference Majumder O, Ravichandran A, Maji S, Polito M, Soatto S (2021) Revisiting contrastive learning for few-shot classification. arXiv: 2101.11058 Majumder O, Ravichandran A, Maji S, Polito M, Soatto S (2021) Revisiting contrastive learning for few-shot classification. arXiv: 2101.11058
34.
go back to reference Chen W, Liu Y, Kira Z, Wang Y, Huang J (2019) A closer look at few-shot classification. arXiv: 1904.04232 Chen W, Liu Y, Kira Z, Wang Y, Huang J (2019) A closer look at few-shot classification. arXiv: 1904.04232
35.
go back to reference Zhang Y, Huang S, Peng X, Yang D (2021) Dizygotic conditional variational autoencoder for multi-modal and partial modality absent few-shot learning. arXiv: 2106.14467 Zhang Y, Huang S, Peng X, Yang D (2021) Dizygotic conditional variational autoencoder for multi-modal and partial modality absent few-shot learning. arXiv: 2106.14467
36.
go back to reference Kang D, Kwon H, Min J, Cho M (2021) Relational embedding for few-shot classification. arXiv: 2108.09666 Kang D, Kwon H, Min J, Cho M (2021) Relational embedding for few-shot classification. arXiv: 2108.09666
37.
go back to reference Afrasiyabi A, Lalonde JF, Gagné C (2020) Mixture-based feature space learning for few-shot image classification. arXiv: 2011.11872 Afrasiyabi A, Lalonde JF, Gagné C (2020) Mixture-based feature space learning for few-shot image classification. arXiv: 2011.11872
38.
go back to reference Ye H, Ming L, Zhan D, Chao W (2021) Few-shot learning with a strong teacher. arXiv: 2107.00197 Ye H, Ming L, Zhan D, Chao W (2021) Few-shot learning with a strong teacher. arXiv: 2107.00197
39.
go back to reference Yuan M, Wang W, Wang T, Cai C, Xu Q, Lu, T (2021) Learning class-level prototypes for few-shot learning. arXiv: 2108.11072 Yuan M, Wang W, Wang T, Cai C, Xu Q, Lu, T (2021) Learning class-level prototypes for few-shot learning. arXiv: 2108.11072
40.
go back to reference Dhillon G, Chaudhari P, Ravichandran A, Soatto S (2019) A baseline for few-shot image classification. arXiv: 1909.02729 Dhillon G, Chaudhari P, Ravichandran A, Soatto S (2019) A baseline for few-shot image classification. arXiv: 1909.02729
41.
go back to reference Lee E, Huang C, Lee C. (2021) Few-shot and continual learning with attentive independent mechanisms. arXiv: 2107.14053 Lee E, Huang C, Lee C. (2021) Few-shot and continual learning with attentive independent mechanisms. arXiv: 2107.14053
42.
go back to reference Schwarcz S, Rambhatla S, Chellappa R (2021) Self-denoising neural networks for few shot learning. arXiv: 2110.13386 Schwarcz S, Rambhatla S, Chellappa R (2021) Self-denoising neural networks for few shot learning. arXiv: 2110.13386
43.
go back to reference Li W, Wang L, Huo J, Shi Y, Gao Y, Luo J (2020) Asymmetric distribution measure for few-shot learning. arXiv: 2002.00153 Li W, Wang L, Huo J, Shi Y, Gao Y, Luo J (2020) Asymmetric distribution measure for few-shot learning. arXiv: 2002.00153
44.
go back to reference Yu Z, Raschka S (2020) Looking back to lower-level information in few-shot learning. arXiv: 2005.13638 Yu Z, Raschka S (2020) Looking back to lower-level information in few-shot learning. arXiv: 2005.13638
45.
go back to reference Lee K, Maij S, Ravichandran A, Soatto S (2019) Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 10649–10657 Lee K, Maij S, Ravichandran A, Soatto S (2019) Meta-learning with differentiable convex optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 10649–10657
46.
go back to reference Ren M, Liao R, Fetaya E, Zemel R. (2018) Incremental few-shot learning with attention attractor networks. arXiv: 1810.07218 Ren M, Liao R, Fetaya E, Zemel R. (2018) Incremental few-shot learning with attention attractor networks. arXiv: 1810.07218
47.
go back to reference Qiao L, Shi Y, Li J, Tian Y, Huang T, Wang Y (2019) Transductive episodic-wise adaptive metric for few-shot learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp 3602–3611 Qiao L, Shi Y, Li J, Tian Y, Huang T, Wang Y (2019) Transductive episodic-wise adaptive metric for few-shot learning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp 3602–3611
48.
go back to reference Ravichandran A, Bhotika R, Soatto S (2019) Few-shot learning with embedded class models and shot-free meta training. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp 331–339 Ravichandran A, Bhotika R, Soatto S (2019) Few-shot learning with embedded class models and shot-free meta training. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp 331–339
49.
go back to reference Tian Y, Wang Y, Krishnan D, Tenenbau J, Isola P (2020) Rethinking few-shot image classification: a good embedding is all you need? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), ELECTR NETWORK, pp 266–282 Tian Y, Wang Y, Krishnan D, Tenenbau J, Isola P (2020) Rethinking few-shot image classification: a good embedding is all you need? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), ELECTR NETWORK, pp 266–282
51.
go back to reference Lazarou M, Avrithis Y, Stathaki T (2021) Few-shot learning via tensor hallucination. arXiv: 2104.09467 Lazarou M, Avrithis Y, Stathaki T (2021) Few-shot learning via tensor hallucination. arXiv: 2104.09467
52.
go back to reference Sun Q, Liu Y, Chen Z, Tat-Seng C, Bernt S (2022) Meta-transfer learning through hard tasks. IEEE Trans Pattern Anal Mach Intell 44(3):1443–1456CrossRef Sun Q, Liu Y, Chen Z, Tat-Seng C, Bernt S (2022) Meta-transfer learning through hard tasks. IEEE Trans Pattern Anal Mach Intell 44(3):1443–1456CrossRef
53.
go back to reference Lifchitz Y, Avrithis Y, Picard S, Bursuc A (2019) Dense classification and implanting for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 9250–9259 Lifchitz Y, Avrithis Y, Picard S, Bursuc A (2019) Dense classification and implanting for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp 9250–9259
54.
go back to reference Afrasiyabi A, Lalonde JF, Gagne C (2020) Associative alignment for few-shot image classification. In: Proceedings of the European Conference on Computer Vision (ECCV), ELECTR NETWORK, pp 18–35 Afrasiyabi A, Lalonde JF, Gagne C (2020) Associative alignment for few-shot image classification. In: Proceedings of the European Conference on Computer Vision (ECCV), ELECTR NETWORK, pp 18–35
55.
go back to reference Wah C, Branson S, Welinder P, Perona P, Belongie S (2011) “The caltech-ucsd birds-200–2011 dataset. Computation& Neural Systems Technical Report. CNS-TR-2011–001 Wah C, Branson S, Welinder P, Perona P, Belongie S (2011) “The caltech-ucsd birds-200–2011 dataset. Computation& Neural Systems Technical Report. CNS-TR-2011–001
56.
go back to reference Hilliard N, Phillips L, Howland S, Yankov A, Corley C, Hodas N (2018) Few-shot learning with metric-agnostic conditional embeddings. arXiv: 1802.04376 Hilliard N, Phillips L, Howland S, Yankov A, Corley C, Hodas N (2018) Few-shot learning with metric-agnostic conditional embeddings. arXiv: 1802.04376
57.
go back to reference Patacchiola M, Turner J, Crowley E, O’Boyle M, Storkey A (2019) Bayesian meta-learning for the few-shot setting via deep kernels. arXiv: 1910.05199 Patacchiola M, Turner J, Crowley E, O’Boyle M, Storkey A (2019) Bayesian meta-learning for the few-shot setting via deep kernels. arXiv: 1910.05199
58.
go back to reference Lazarou M, Avrithis Y, Stathaki T (2021) Tensor feature hallucination for few-shot learning. arXiv: 2106.05321 Lazarou M, Avrithis Y, Stathaki T (2021) Tensor feature hallucination for few-shot learning. arXiv: 2106.05321
59.
go back to reference Bossard L, Guillaumin M, Gool L (2014) Food-101–mining discriminative components withrandom forests,” In: Proceedings of the European Conference on Computer Vision (ECCV), Zurich, SWITZERLAND, pp 446–461 Bossard L, Guillaumin M, Gool L (2014) Food-101–mining discriminative components withrandom forests,” In: Proceedings of the European Conference on Computer Vision (ECCV), Zurich, SWITZERLAND, pp 446–461
60.
go back to reference Chen X, Zhu Y, Zhou H, Diao L, Wang D (2017) ChineseFoodNet: a large-scale image dataset for chinese food recognition. arXiv: 1705.02743 Chen X, Zhu Y, Zhou H, Diao L, Wang D (2017) ChineseFoodNet: a large-scale image dataset for chinese food recognition. arXiv: 1705.02743
61.
go back to reference Jiang S, Min W, Lv Y, Liu L (2020) Few-shot food recognition via multi-view representation learning. ACM Trans Multimed Comput Commun Appl 16(3):1–20CrossRef Jiang S, Min W, Lv Y, Liu L (2020) Few-shot food recognition via multi-view representation learning. ACM Trans Multimed Comput Commun Appl 16(3):1–20CrossRef
Metadata
Title
Few-shot learning based on enhanced pseudo-labels and graded pseudo-labeled data selection
Authors
Kang Wang
Xuesong Wang
Yuhu Cheng
Publication date
12-12-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 5/2023
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01727-z

Other articles of this Issue 5/2023

International Journal of Machine Learning and Cybernetics 5/2023 Go to the issue