Skip to main content
Top

2020 | OriginalPaper | Chapter

Fiat-Shamir for Repeated Squaring with Applications to PPAD-Hardness and VDFs

Authors : Alex Lombardi, Vinod Vaikuntanathan

Published in: Advances in Cryptology – CRYPTO 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Fiat-Shamir transform is a methodology for compiling a (public-coin) interactive proof system for a language L into a non-interactive argument system for L. Proving security of the Fiat-Shamir transform in the standard model, especially in the context of succinct arguments, is largely an unsolved problem. The work of Canetti et al. (STOC 2019) proved the security of the Fiat-Shamir transform applied to the Goldwasser-Kalai-Rothblum (STOC 2008) succinct interactive proof system under a very strong “optimal learning with errors” assumption. Achieving a similar result under standard assumptions remains an important open question.
In this work, we consider the problem of compiling a different succinct interactive proof system: Pietrzak’s proof system (ITCS 2019) for the iterated squaring problem. We construct a hash function family (with evaluation time roughly \(2^{\lambda ^{\epsilon }}\)) that guarantees the soundness of Fiat-Shamir for this protocol assuming the sub-exponential (\(2^{-n^{1-\epsilon }}\))-hardness of the n-dimensional learning with errors problem. (The latter follows from the worst-case \(2^{n^{1-\epsilon }}\) hardness of lattice problems.) More generally, we extend the “bad-challenge function” methodology of Canetti et al. for proving the soundness of Fiat-Shamir to a class of protocols whose bad-challenge functions are not efficiently computable.
As a corollary (following Choudhuri et al., ePrint 2019 and Ephraim et al., EUROCRYPT 2020), we construct hard-on-average problems in the complexity class \(\mathbf {CLS}\subset \mathbf {PPAD}\) under the \(2^{\lambda ^\epsilon }\)-hardness of the repeated squaring problem and the \(2^{-n^{1-\epsilon }}\)-hardness of the learning with errors problem. Under the additional assumption that the repeated squaring problem is “inherently sequential”, we also obtain a Verifiable Delay Function (Boneh et al., EUROCRYPT 2018) in the standard model. Finally, we give additional PPAD-hardness and VDF instantiations demonstrating a broader tradeoff between the strength of the repeated squaring assumption and the strength of the lattice assumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
[BBBF18] explicitly suggested this.
 
2
The two works [Pie18, Wes19] consider qualitatively different interactive argument systems. In this work, we focus on the [Pie18] protocol since (1) it has unconditional soundness and therefore is more conducive to provable Fiat-Shamir compilation, and (2) it is more closely related to \(\mathbf {PPAD}\)-hardness.
 
3
Our protocol differs very slightly from the formulation in [CHK+19b], but the difference is irrelevant to the reduction.
 
4
The prover can cheat on a pair \((\alpha , \beta )\) if and only if there exists a third message \(\gamma \) such that \((x, \alpha , \beta , \gamma )\) is accepted by the verifier.
 
5
To obtain adaptive soundness, we modify the protocol to set \(\beta = h(x, \alpha )\) and instead consider the function \(f(x, \alpha ) = \beta ^*(x, \alpha )\).
 
6
The only current known Fiat-Shamir instantiation for the [GKR08] protocol utilizes a compact correlation intractable hash family (in the sense that the hash evaluation time is independent of the time to compute the correlation function/relation) which we only know how to build from an optimal security assumption [CCH+19].
 
7
For this overview, we ignore the details of working over the group \(\mathbb {QR}_N\subset \mathbb {Z}_N^\times \) and the corresponding technical challenges.
 
8
To guarantee this property, r is selected from a range smaller than either of the prime factors of N.
 
9
See [JOP14] for a detailed discussion of the state-of-the-art on discrete logarithm algorithms.
 
10
We are not aware of prior work considering this particular time-probability trade-off, but the necessary smooth number bounds appear in [CEP83, Gra08]. Quite curiously, [CCRR18] considers the \(\mathrm {poly}(\lambda )\)-time variant of this algorithm to give evidence against the optimal hardness of computing discrete logarithms over \(\mathbb {Z}_p^\times \). That was bad for them, but for us, the non-optimal hardness is a feature!.
 
11
This second variant allows for an invocation of correlation intractability against uniform adversaries in the security proof.
 
12
Crucially, we must also bound the number of calls that can be made to the oracle to be at most \(\mathrm {poly}\log (\lambda )\) to get a meaningful result.
 
Literature
go back to reference Albrecht, M., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.: Faster enumeration-based lattice reduction: root Hermite factor \(k^{1/(2k)}\) in time \(k^{k/8+o(k)}\). In: CRYPTO (2020) Albrecht, M., Bai, S., Fouque, P.-A., Kirchner, P., Stehlé, D., Wen, W.: Faster enumeration-based lattice reduction: root Hermite factor \(k^{1/(2k)}\) in time \(k^{k/8+o(k)}\). In: CRYPTO (2020)
go back to reference Adleman, L.: A subexponential algorithm for the discrete logarithm problem with applications to cryptography. In: 20th Annual Symposium on Foundations of Computer Science (SFCS 1979), pp. 55–60. IEEE (1979) Adleman, L.: A subexponential algorithm for the discrete logarithm problem with applications to cryptography. In: 20th Annual Symposium on Foundations of Computer Science (SFCS 1979), pp. 55–60. IEEE (1979)
go back to reference Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the shortest vector problem in 2n time using discrete gaussian sampling. In: STOC 2015, pp. 733–742 (2015) Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the shortest vector problem in 2n time using discrete gaussian sampling. In: STOC 2015, pp. 733–742 (2015)
go back to reference Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: CRYPTO (2019) Ananth, P., Jain, A., Lin, H., Matt, C., Sahai, A.: Indistinguishability obfuscation without multilinear maps: new paradigms via low degree weak pseudorandomness and security amplification. In: CRYPTO (2019)
go back to reference Barak, B.: How to go beyond the black-box simulation barrier. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 106–115. IEEE (2001) Barak, B.: How to go beyond the black-box simulation barrier. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 106–115. IEEE (2001)
go back to reference Bitansky, N., Gerichter, I.: On the cryptographic hardness of local search. In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020) Bitansky, N., Gerichter, I.: On the cryptographic hardness of local search. In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
go back to reference Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013) Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)
go back to reference Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 2. Citeseer (1986) Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 2. Citeseer (1986)
go back to reference Barak, B., Lindell, Y., Vadhan, S.: Lower bounds for non-black-box zero knowledge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)MathSciNetCrossRef Barak, B., Lindell, Y., Vadhan, S.: Lower bounds for non-black-box zero knowledge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)MathSciNetCrossRef
go back to reference Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a nash equilibrium. In: FOCS 2015. IEEE (2015) Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a nash equilibrium. In: FOCS 2015. IEEE (2015)
go back to reference Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and communications security, pp. 62–73. ACM (1993) Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and communications security, pp. 62–73. ACM (1993)
go back to reference Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D.: Fiat-Shamir from simpler assumptions. IACR Cryptol. ePrint Arch. 2018, 1004 (2018)MATH Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D.: Fiat-Shamir from simpler assumptions. IACR Cryptol. ePrint Arch. 2018, 1004 (2018)MATH
go back to reference Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC 2019. ACM (2019). Merge of [CCH\(^+\)18] and [CLW18] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC 2019. ACM (2019). Merge of [CCH\(^+\)18] and [CLW18]
go back to reference Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player nash equilibria. J. ACM (JACM) 56(3), 1–57 (2009)MathSciNetCrossRef Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player nash equilibria. J. ACM (JACM) 56(3), 1–57 (2009)MathSciNetCrossRef
go back to reference Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of oppenheim concerning “factorisatio numerorum”. J. Number Theory 17(1), 1–28 (1983)MathSciNetCrossRef Canfield, E.R., Erdös, P., Pomerance, C.: On a problem of oppenheim concerning “factorisatio numerorum”. J. Number Theory 17(1), 1–28 (1983)MathSciNetCrossRef
go back to reference Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge. In: STOC 2000, pp. 235–244 (2000) Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero-knowledge. In: STOC 2000, pp. 235–244 (2000)
go back to reference Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM (JACM) 51(4), 557–594 (2004)MathSciNetCrossRef Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM (JACM) 51(4), 557–594 (2004)MathSciNetCrossRef
go back to reference Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum, G.N.: Finding a nash equilibrium is no easier than breaking Fiat-Shamir. In: STOC 2019 (2019) Choudhuri, A.R., Hubáček, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum, G.N.: Finding a nash equilibrium is no easier than breaking Fiat-Shamir. In: STOC 2019 (2019)
go back to reference Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum, G.N.: PPAD-hardness via iterated squaring modulo a composite. Cryptology ePrint Archive, Report 2019/667, 2019 (2019) Choudhuri, A.R., Hubácek, P., Kamath, C., Pietrzak, K., Rosen, A., Rothblum, G.N.: PPAD-hardness via iterated squaring modulo a composite. Cryptology ePrint Archive, Report 2019/667, 2019 (2019)
go back to reference Canetti, R., Lombardi, A., Wichs, D.: Fiat-shamir: from practice to theory, part II (non-interactive zero knowledge and correlation intractability from circular-secure FHE). IACR Cryptol. ePrint Arch. 2018, 1248 (2018) Canetti, R., Lombardi, A., Wichs, D.: Fiat-shamir: from practice to theory, part II (non-interactive zero knowledge and correlation intractability from circular-secure FHE). IACR Cryptol. ePrint Arch. 2018, 1248 (2018)
go back to reference Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)MathSciNetCrossRef Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)MathSciNetCrossRef
go back to reference Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. In: FOCS (1999) Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.: Magic functions. In: FOCS (1999)
go back to reference Daskalakis, C., Papadimitriou, C.: Continuous local search. In: SODA 2011, pp. 790–804. SIAM (2011) Daskalakis, C., Papadimitriou, C.: Continuous local search. In: SODA 2011, pp. 790–804. SIAM (2011)
go back to reference Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay functions. In: EUROCRYPT 2020 (2019) Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay functions. In: EUROCRYPT 2020 (2019)
go back to reference After 20 years, someone finally solved this MIT puzzle (2019) After 20 years, someone finally solved this MIT puzzle (2019)
go back to reference Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)MathSciNetCrossRef Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)MathSciNetCrossRef
go back to reference Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013 (2013) Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013 (2013)
go back to reference Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS 2003, pp. 102–113. IEEE (2003) Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS 2003, pp. 102–113. IEEE (2003)
go back to reference Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC 2008, pp. 113–122. ACM (2008) Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC 2008, pp. 113–122. ACM (2008)
go back to reference Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC 1985, pp. 291–304. ACM (1985) Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC 1985, pp. 291–304. ACM (1985)
go back to reference Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)MathSciNetCrossRef Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3), 690–728 (1991)MathSciNetCrossRef
go back to reference Granville, A.: Smooth numbers: computational number theory and beyond. Algorithm. Number Theory Lattices Number Fields Curves Cryptograph. 44, 267–323 (2008)MathSciNetMATH Granville, A.: Smooth numbers: computational number theory and beyond. Algorithm. Number Theory Lattices Number Fields Curves Cryptograph. 44, 267–323 (2008)MathSciNetMATH
go back to reference Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions. In: FOCS 2018 (2018) Holmgren, J., Lombardi, A.: Cryptographic hashing from strong one-way functions. In: FOCS 2018 (2018)
go back to reference Hubáček , P., Yogev, E.: Hardness of continuous local search: query complexity and cryptographic lower bounds. In: SODA 2017, pp. 1352–1371. SIAM (2017) Hubáček , P., Yogev, E.: Hardness of continuous local search: query complexity and cryptographic lower bounds. In: SODA 2017, pp. 1352–1371. SIAM (2017)
go back to reference Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. In: EUROCRYPT 2020 (2019) Jain, A., Jin, Z.: Statistical zap arguments from quasi-polynomial LWE. In: EUROCRYPT 2020 (2019)
go back to reference Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for \(i\cal{O}\). Cryptology ePrint Archive, Report 2019/1252 (2019) Jain, A., Lin, H., Sahai, A.: Simplifying constructions and assumptions for \(i\cal{O}\). Cryptology ePrint Archive, Report 2019/1252 (2019)
go back to reference Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: STOC 1983, pp. 193–206 (1983) Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: STOC 1983, pp. 193–206 (1983)
go back to reference Kirchner, P., Fouque, P.-A.: Time-memory trade-off for lattice enumeration in a ball. IACR Cryptol. ePrint Arch. 2016, 222 (2016) Kirchner, P., Fouque, P.-A.: Time-memory trade-off for lattice enumeration in a ball. IACR Cryptol. ePrint Arch. 2016, 222 (2016)
go back to reference Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: STOC 2019, pp. 1115–1124 (2019) Kalai, Y.T., Paneth, O., Yang, L.: How to delegate computations publicly. In: STOC 2019, pp. 1115–1124 (2019)
go back to reference Kalai, Y., Paneth, O., Yang, L.: PPAD-hardness and delegation with unambiguous and updatable proofs. In: CRYPTO 2020 (2020) Kalai, Y., Paneth, O., Yang, L.: PPAD-hardness and delegation with unambiguous and updatable proofs. In: CRYPTO 2020 (2020)
go back to reference Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)MathSciNetCrossRef Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)MathSciNetCrossRef
go back to reference Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field sieve. In: STOC 1990, pp. 564–572 (1990) Lenstra, A.K., Lenstra Jr., H.W., Manasse, M.S., Pollard, J.M.: The number field sieve. In: STOC 1990, pp. 564–572 (1990)
go back to reference Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifiable WI from (subexponential) LWE. Cryptology ePrint Archive, Report 2019/808 (2019) Lombardi, A., Vaikuntanathan, V., Wichs, D.: 2-message publicly verifiable WI from (subexponential) LWE. Cryptology ePrint Archive, Report 2019/808 (2019)
go back to reference Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)MathSciNetCrossRef Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)MathSciNetCrossRef
go back to reference Pietrzak, K.: Simple verifiable delay functions. In: ITCS 2019 (2018) Pietrzak, K.: Simple verifiable delay functions. In: ITCS 2019 (2018)
go back to reference Pomerance, C.: Fast, rigorous factorization and discrete logarithm algorithms. In: Discrete Algorithms and Complexity, pp. 119–143. Elsevier (1987) Pomerance, C.: Fast, rigorous factorization and discrete logarithm algorithms. In: Discrete Algorithms and Complexity, pp. 119–143. Elsevier (1987)
go back to reference Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: STOC 2017, pp. 461–473. ACM (2017) Peikert, C., Regev, O., Stephens-Davidowitz, N.: Pseudorandomness of ring-LWE for any ring and modulus. In: STOC 2017, pp. 461–473. ACM (2017)
go back to reference Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)MathSciNetCrossRef Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)MathSciNetCrossRef
go back to reference Description of the LCS35 time capsule crypto-puzzle (1999) Description of the LCS35 time capsule crypto-puzzle (1999)
go back to reference Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. SIAM J. Comput. STOC16-255 (2016) Reingold, O., Rothblum, G.N., Rothblum, R.D.: Constant-round interactive proofs for delegating computation. SIAM J. Comput. STOC16-255 (2016)
go back to reference Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto (1996) Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto (1996)
Metadata
Title
Fiat-Shamir for Repeated Squaring with Applications to PPAD-Hardness and VDFs
Authors
Alex Lombardi
Vinod Vaikuntanathan
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-56877-1_22

Premium Partner