Skip to main content
Top

2018 | OriginalPaper | Chapter

10. Field Effects on Reacting Systems

Authors : Eugene A. Olevsky, Dina V. Dudina

Published in: Field-Assisted Sintering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the behavior of multicomponent and reacting powder systems in electromagnetic fields is discussed in view of the possibilities of the formation of dense materials as well as reaction products of different porosities and morphologies. General considerations regarding the process of reactive sintering and its driving forces are presented. Studies demonstrating the intensification of diffusion in the presence of the inter-particle contact heat sources are reviewed. Possibilities of reactive sintering during microwave treatment and sintering in constant magnetic field are presented. Initiation of chemical reactions by electric current, including high-voltage electric discharges, and mechanisms responsible for acceleration and deceleration of chemical reactions under applied electric field are discussed. It is shown that spark plasma sintering (SPS) has become a popular synthesis method in solid-state chemistry and a materials design tool at different length scales. The best scenario for obtaining a dense fine-grained material by reactive SPS is simultaneous reaction and densification: the reaction in the system should start at temperatures high enough to sinter the reaction product to high relative densities. Possible transformations of carbon allotropes under applied electric current are reviewed. Specifics of interaction of materials with carbon of graphite tooling and graphite foil and the mechanisms of carbon incorporation into materials of different chemical nature during SPS are discussed. Examples of materials with attractive mechanical and functional properties obtained by reactive SPS are presented. It is demonstrated that particles with core–shell morphology are interesting objects to be processed by SPS into bulk porous or dense solids. It is concluded that the successes of reactive SPS in synthesizing bulk materials can be further extended to the simultaneous synthesis and joining of different materials as well as manufacturing of coatings.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Basu B, Balani K (2011) Advanced structural ceramics. Wiley, Hoboken, NJ 475 pCrossRef Basu B, Balani K (2011) Advanced structural ceramics. Wiley, Hoboken, NJ 475 pCrossRef
2.
go back to reference Meyers MA, Olevsky EA, Ma J, Janet M (2001) Combustion synthesis/densification of an Al2O3-TiB2 composite. Mater Sci Eng A 311(1–2):83–99CrossRef Meyers MA, Olevsky EA, Ma J, Janet M (2001) Combustion synthesis/densification of an Al2O3-TiB2 composite. Mater Sci Eng A 311(1–2):83–99CrossRef
3.
go back to reference Zhang X, He X, Han J, Qu W, Kvanin VL (2002) Combustion synthesis and densification of large-scale TiC-xNi cermets. Mater Lett 56(3):183–187CrossRef Zhang X, He X, Han J, Qu W, Kvanin VL (2002) Combustion synthesis and densification of large-scale TiC-xNi cermets. Mater Lett 56(3):183–187CrossRef
4.
go back to reference Xu Q, Zhang X, Han J, He X, Kvanin VL (2003) Combustion synthesis and densification of titanium diboride-copper matrix composite. Mater Lett 57(28):4439–4444CrossRef Xu Q, Zhang X, Han J, He X, Kvanin VL (2003) Combustion synthesis and densification of titanium diboride-copper matrix composite. Mater Lett 57(28):4439–4444CrossRef
5.
go back to reference Dargar SR, Groven LJ, Swiatkiewicz JJ, Puszynski JA (2007) In situ densification of SHS composites from nanoreactants. Int J Self-Propag High Temp Synth 16(3):125–132CrossRef Dargar SR, Groven LJ, Swiatkiewicz JJ, Puszynski JA (2007) In situ densification of SHS composites from nanoreactants. Int J Self-Propag High Temp Synth 16(3):125–132CrossRef
6.
go back to reference Mishra SK, Das SK, Sherbacov V (2007) Fabrication of Al2O3-ZrB2 in situ composite by SHS dynamic compaction: a novel approach. Compos Sci Technol 67(11):2447–2453CrossRef Mishra SK, Das SK, Sherbacov V (2007) Fabrication of Al2O3-ZrB2 in situ composite by SHS dynamic compaction: a novel approach. Compos Sci Technol 67(11):2447–2453CrossRef
7.
go back to reference Gutmanas EY, Gotman I (1999) Dense high temperature ceramics by thermal explosion under pressure. J Eur Ceram Soc 19(13–14):2381–2393CrossRef Gutmanas EY, Gotman I (1999) Dense high temperature ceramics by thermal explosion under pressure. J Eur Ceram Soc 19(13–14):2381–2393CrossRef
8.
go back to reference Horvitz D, Gotman I, Gutmanas EY, Claussen N (2002) In situ processing of dense Al2O3–Ti aluminide interpenetrating phase composites. J Eur Ceram Soc 22(6):947–954CrossRef Horvitz D, Gotman I, Gutmanas EY, Claussen N (2002) In situ processing of dense Al2O3–Ti aluminide interpenetrating phase composites. J Eur Ceram Soc 22(6):947–954CrossRef
9.
go back to reference Zehetbauer MJ, Zhu YT (eds) (2009) Bulk nanostructured materials. Wiley, Hoboken, NJ 736 p Zehetbauer MJ, Zhu YT (eds) (2009) Bulk nanostructured materials. Wiley, Hoboken, NJ 736 p
10.
11.
go back to reference Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29:49–113CrossRef Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R 29:49–113CrossRef
12.
go back to reference Olevsky E, Bogachev I, Maximenko A (2013) Spark-plasma sintering efficiency control by inter-particle contact area growth: a viewpoint. Scr Mater 69(2):112–116CrossRef Olevsky E, Bogachev I, Maximenko A (2013) Spark-plasma sintering efficiency control by inter-particle contact area growth: a viewpoint. Scr Mater 69(2):112–116CrossRef
13.
go back to reference Savitskii AP (1991) Liquid-phase sintering of systems with interacting components. Nauka, Novosibirsk (in Russian) Savitskii AP (1991) Liquid-phase sintering of systems with interacting components. Nauka, Novosibirsk (in Russian)
14.
go back to reference Savitskii AP (2005) Scientific approaches to problems of mixtures sintering. Sci Sinter 37:3–17CrossRef Savitskii AP (2005) Scientific approaches to problems of mixtures sintering. Sci Sinter 37:3–17CrossRef
15.
go back to reference Olevsky E, Skorohod V, Petzow G (1997) Densification by sintering incorporating phase transformations. Scr Mater 37(5):635–643CrossRef Olevsky E, Skorohod V, Petzow G (1997) Densification by sintering incorporating phase transformations. Scr Mater 37(5):635–643CrossRef
16.
go back to reference Krishtal MA, Zakharov PN, Kokora AN (1976) On the contribution of diffusion processes to re-distribution effects in solids under laser treatment. Fiz Khim Obrab Mater (Phys Chem Mater Process) 4:24–28 (in Russian) Krishtal MA, Zakharov PN, Kokora AN (1976) On the contribution of diffusion processes to re-distribution effects in solids under laser treatment. Fiz Khim Obrab Mater (Phys Chem Mater Process) 4:24–28 (in Russian)
17.
go back to reference Raichenko AI (1987) Basics of electric current-assisted sintering. Metallurgiya, Moscow 128 p. (in Russian) Raichenko AI (1987) Basics of electric current-assisted sintering. Metallurgiya, Moscow 128 p. (in Russian)
18.
go back to reference Burenkov GL, Raichenko AI (1980) On diffusion during heat evolution at the contact of the diffusion pair components. Ukr Fiz Zh (Ukr J Phys) 25(12):2037–2045 (in Russian) Burenkov GL, Raichenko AI (1980) On diffusion during heat evolution at the contact of the diffusion pair components. Ukr Fiz Zh (Ukr J Phys) 25(12):2037–2045 (in Russian)
19.
go back to reference German RM (1996) Sintering theory and practice. Wiley, New York, NY 568 p German RM (1996) Sintering theory and practice. Wiley, New York, NY 568 p
20.
go back to reference Misiolek W, German RM (1991) Reactive sintering and reactive hot isostatic compaction of aluminide matrix composites. Mater Sci Eng A 144(1–2):1–10CrossRef Misiolek W, German RM (1991) Reactive sintering and reactive hot isostatic compaction of aluminide matrix composites. Mater Sci Eng A 144(1–2):1–10CrossRef
21.
go back to reference Belousov VY, Pilipchenko AV, Lutsak LD (1988) Some relationships governing initiation of self-propagating synthesis in direct electric heating. Sov Powder Metall Met Ceram 27(10):813–816CrossRef Belousov VY, Pilipchenko AV, Lutsak LD (1988) Some relationships governing initiation of self-propagating synthesis in direct electric heating. Sov Powder Metall Met Ceram 27(10):813–816CrossRef
22.
go back to reference Morsi K, Mehra P (2014) Effect of mechanical and electrical activation on the combustion synthesis of Al3Ti. J Mater Sci 49(15):5271–5278CrossRef Morsi K, Mehra P (2014) Effect of mechanical and electrical activation on the combustion synthesis of Al3Ti. J Mater Sci 49(15):5271–5278CrossRef
23.
go back to reference Bertolino N, Garay J, Anselmi-Tamburini U, Munir ZA (2001) Electromigration effects in Al-Au multilayers. Scr Mater 44:737–742CrossRef Bertolino N, Garay J, Anselmi-Tamburini U, Munir ZA (2001) Electromigration effects in Al-Au multilayers. Scr Mater 44:737–742CrossRef
24.
go back to reference Bertolino N, Garay J, Anselmi-Tamburini U, Munir ZA (2002) High-flux current effects in interfacial reactions in Au–Al multilayers. Philos Mag B 82:969–985 Bertolino N, Garay J, Anselmi-Tamburini U, Munir ZA (2002) High-flux current effects in interfacial reactions in Au–Al multilayers. Philos Mag B 82:969–985
25.
go back to reference Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Fundamental investigations on the spark-plasma sintering/synthesis process. III. Current effect on reactivity. Mater Sci Eng A 407(1–2):24–30CrossRef Anselmi-Tamburini U, Garay JE, Munir ZA (2005) Fundamental investigations on the spark-plasma sintering/synthesis process. III. Current effect on reactivity. Mater Sci Eng A 407(1–2):24–30CrossRef
26.
go back to reference Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Electric current enhanced defect mobility in Ni3Ti intermetallics. Appl Phys Lett 85:573CrossRef Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Electric current enhanced defect mobility in Ni3Ti intermetallics. Appl Phys Lett 85:573CrossRef
27.
go back to reference Zhao J, Garay JE, Anselmi-Tamburini U, Munir ZA (2007) Directional electromigration-enhanced interdiffusion in the Cu–Ni system. J Appl Phys 102(11):114902 7 pCrossRef Zhao J, Garay JE, Anselmi-Tamburini U, Munir ZA (2007) Directional electromigration-enhanced interdiffusion in the Cu–Ni system. J Appl Phys 102(11):114902 7 pCrossRef
28.
go back to reference Kondo T, Kuramoto T, Kodera Y, Ohyanagi M, Munir ZA (2008) Enhanced growth of Mo2C formed in Mo–C diffusion couple by pulsed dc current. J Jpn Soc Powder Powder Metall 55:643–650CrossRef Kondo T, Kuramoto T, Kodera Y, Ohyanagi M, Munir ZA (2008) Enhanced growth of Mo2C formed in Mo–C diffusion couple by pulsed dc current. J Jpn Soc Powder Powder Metall 55:643–650CrossRef
29.
go back to reference Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater 51:4487–4495CrossRef Garay JE, Anselmi-Tamburini U, Munir ZA (2003) Enhanced growth of intermetallic phases in the Ni–Ti system by current effects. Acta Mater 51:4487–4495CrossRef
30.
go back to reference Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium diboride. J Mater Sci 41(10):3097–3104CrossRef Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, Johnson SM (2006) Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium diboride. J Mater Sci 41(10):3097–3104CrossRef
31.
go back to reference Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRef Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRef
32.
go back to reference Mackenzie KJD, Banerjee RK, Kasaai MR (1979) Effect of electric fields on solid-state reactions between oxides. Part 1. Reaction between calcium and aluminum oxides. J Mater Sci 14:333–338CrossRef Mackenzie KJD, Banerjee RK, Kasaai MR (1979) Effect of electric fields on solid-state reactions between oxides. Part 1. Reaction between calcium and aluminum oxides. J Mater Sci 14:333–338CrossRef
33.
go back to reference Neiman AY, Krylov AO, Kuznetsov VA (1985) The influence of electric field on solid-state reactions between oxides. Russ J Phys Chem A 59(9):2360–2361 (in Russian) Neiman AY, Krylov AO, Kuznetsov VA (1985) The influence of electric field on solid-state reactions between oxides. Russ J Phys Chem A 59(9):2360–2361 (in Russian)
34.
go back to reference Mackenzie KJD, Banerjee RK (1979) Effect of electric fields on solid-state reactions between oxides. Part 2. Interdiffusion studies in polycrystalline calcium and aluminium oxide pellets. J Mater Sci 14:339–344CrossRef Mackenzie KJD, Banerjee RK (1979) Effect of electric fields on solid-state reactions between oxides. Part 2. Interdiffusion studies in polycrystalline calcium and aluminium oxide pellets. J Mater Sci 14:339–344CrossRef
35.
go back to reference Zingel EM (1982) The influence of electric field on the thermolysis rate of KMnO4. Russ J Phys Chem A 57(3):766–768 (in Russian) Zingel EM (1982) The influence of electric field on the thermolysis rate of KMnO4. Russ J Phys Chem A 57(3):766–768 (in Russian)
36.
go back to reference Anisimov AG, Mali VI (2010) Possibility of electric-pulse sintering of powder nanostructural composites. Combust Explos Shock Waves 46(2):237–241CrossRef Anisimov AG, Mali VI (2010) Possibility of electric-pulse sintering of powder nanostructural composites. Combust Explos Shock Waves 46(2):237–241CrossRef
37.
go back to reference An YB, Oh NH, Chun YW, Kim DK, Park JS, Choi KO, Eom TG, Byun TH, Kim JY, Byun CS, Hyun CY, Reucroft PJ, Lee WH (2006) One–step process for the fabrication of Ti porous compact and its surface modification by environmental electro–discharge sintering of spherical Ti powders. Surf Coat Technol 200(14–15):4300–4304CrossRef An YB, Oh NH, Chun YW, Kim DK, Park JS, Choi KO, Eom TG, Byun TH, Kim JY, Byun CS, Hyun CY, Reucroft PJ, Lee WH (2006) One–step process for the fabrication of Ti porous compact and its surface modification by environmental electro–discharge sintering of spherical Ti powders. Surf Coat Technol 200(14–15):4300–4304CrossRef
38.
go back to reference Sizonenko ON, Baglyuk GA, Taftai EI, Zaichenko AD, Lipyan EV, Torpakov AS, Zhdanov AA, Pristash NS (2013) Dispersion and carburization of titanium powders by electric discharge. Powder Metall Met Ceram 52(5–6):247–253CrossRef Sizonenko ON, Baglyuk GA, Taftai EI, Zaichenko AD, Lipyan EV, Torpakov AS, Zhdanov AA, Pristash NS (2013) Dispersion and carburization of titanium powders by electric discharge. Powder Metall Met Ceram 52(5–6):247–253CrossRef
39.
go back to reference Calka A, Wexler D (2002) Mechanical milling assisted by electrical discharge. Nature 419:147–151CrossRef Calka A, Wexler D (2002) Mechanical milling assisted by electrical discharge. Nature 419:147–151CrossRef
40.
go back to reference Calka A, Chowdhury AA, Konstantinov K (2012) Rapid synthesis of functional oxides by electric discharge assisted mechanical method. J Alloys Compd 536:3–8CrossRef Calka A, Chowdhury AA, Konstantinov K (2012) Rapid synthesis of functional oxides by electric discharge assisted mechanical method. J Alloys Compd 536:3–8CrossRef
41.
go back to reference Agrawal DK (1998) Microwave processing of ceramics. Curr Opin Solid State Mater Sci 3(5):480–485CrossRef Agrawal DK (1998) Microwave processing of ceramics. Curr Opin Solid State Mater Sci 3(5):480–485CrossRef
42.
go back to reference Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895CrossRef Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Synthesis of inorganic solids using microwaves. Chem Mater 11:882–895CrossRef
43.
go back to reference Rao KJ, Vaidhyanathan B (1995) A process of preparing molybdenum disilicide using microwaves. Indian Patent No. 788/MAS/95 Rao KJ, Vaidhyanathan B (1995) A process of preparing molybdenum disilicide using microwaves. Indian Patent No. 788/MAS/95
44.
go back to reference Barzegar Bafrooei H, Ebadzadeh T, Majidian H (2014) Microwave synthesis and sintering of forsterite nanopowder produced by high-energy ball milling. Ceram Int 40:2869–2876CrossRef Barzegar Bafrooei H, Ebadzadeh T, Majidian H (2014) Microwave synthesis and sintering of forsterite nanopowder produced by high-energy ball milling. Ceram Int 40:2869–2876CrossRef
45.
go back to reference Lei Y, Lia Y, Xu L, Yang J, Wan R, Long H (2016) Microwave synthesis and sintering of TiNiSn thermoelectric bulk. J Alloys Compd 660:166–170CrossRef Lei Y, Lia Y, Xu L, Yang J, Wan R, Long H (2016) Microwave synthesis and sintering of TiNiSn thermoelectric bulk. J Alloys Compd 660:166–170CrossRef
46.
go back to reference Cesário MR, Savary E, Marinel S, Raveau B, Caignaert V (2016) Synthesis and electrochemical performance of Ce1−xYbxO2−x/2 solid electrolytes: the potential of microwave sintering. Solid State Ionics 294:67–72CrossRef Cesário MR, Savary E, Marinel S, Raveau B, Caignaert V (2016) Synthesis and electrochemical performance of Ce1−xYbxO2−x/2 solid electrolytes: the potential of microwave sintering. Solid State Ionics 294:67–72CrossRef
47.
go back to reference Sivanagi Reddy E, Sukumaran S, James Raju KC (2016) Microwave assisted synthesis and sintering of lead-free ferroelectric CaBi4Ti4O15 ceramics. Mater Today Proc 3:2213–2219CrossRef Sivanagi Reddy E, Sukumaran S, James Raju KC (2016) Microwave assisted synthesis and sintering of lead-free ferroelectric CaBi4Ti4O15 ceramics. Mater Today Proc 3:2213–2219CrossRef
48.
go back to reference Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T (2014) Microwave-assisted synthesis and sintering of potassium sodium niobate lead-free piezoelectric ceramics. Ceram Int 40:871–877CrossRef Feizpour M, Barzegar Bafrooei H, Hayati R, Ebadzadeh T (2014) Microwave-assisted synthesis and sintering of potassium sodium niobate lead-free piezoelectric ceramics. Ceram Int 40:871–877CrossRef
49.
go back to reference Lu X, Ding Y, Dan H, Yuan S, Mao X, Fan L, Wu Y (2014) Rapid synthesis of single phase Gd2Zr2O7 pyrochlore waste forms by microwave sintering. Ceram Int 40:13191–13194CrossRef Lu X, Ding Y, Dan H, Yuan S, Mao X, Fan L, Wu Y (2014) Rapid synthesis of single phase Gd2Zr2O7 pyrochlore waste forms by microwave sintering. Ceram Int 40:13191–13194CrossRef
50.
go back to reference Lekse JW, Stagger TJ, Aitken JA (2007) Microwave metallurgy: synthesis of intermetallic compounds via microwave irradiation. Chem Mater 19(15):3601–3603CrossRef Lekse JW, Stagger TJ, Aitken JA (2007) Microwave metallurgy: synthesis of intermetallic compounds via microwave irradiation. Chem Mater 19(15):3601–3603CrossRef
51.
go back to reference Rosa R, Veronesi P, Casagrande A, Leonelli C (2016) Microwave ignition of the combustion synthesis of aluminides and field-related effects. J Alloys Compd 657:59–67CrossRef Rosa R, Veronesi P, Casagrande A, Leonelli C (2016) Microwave ignition of the combustion synthesis of aluminides and field-related effects. J Alloys Compd 657:59–67CrossRef
52.
go back to reference Mitsui Y, Umetsu RY, Koyama K, Watanabe K (2014) Magnetic-field-induced enhancement for synthesizing ferromagnetic MnBi phase by solid-state reaction sintering. J Alloys Compd 615:131–134CrossRef Mitsui Y, Umetsu RY, Koyama K, Watanabe K (2014) Magnetic-field-induced enhancement for synthesizing ferromagnetic MnBi phase by solid-state reaction sintering. J Alloys Compd 615:131–134CrossRef
53.
go back to reference Mitsui Y, Abematsu K, Umetsu RY, Takahashi K, Koyama K (2016) Magnetic field effects on liquid-phase reactive sintering of MnBi. J Magn Magn Mater 400:304–306CrossRef Mitsui Y, Abematsu K, Umetsu RY, Takahashi K, Koyama K (2016) Magnetic field effects on liquid-phase reactive sintering of MnBi. J Magn Magn Mater 400:304–306CrossRef
54.
go back to reference Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRef Orrù R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63(4–6):127–287CrossRef
55.
go back to reference Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 2013 article ID 625218, 12 p Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis. J Nanomater 2013 article ID 625218, 12 p
56.
go back to reference Hulbert DM, Jiang D, Dudina DV, Mukherjee AK (2009) The synthesis and consolidation of hard materials by spark plasma sintering. Int J Refract Metals Hard Mater 27(2):367–375CrossRef Hulbert DM, Jiang D, Dudina DV, Mukherjee AK (2009) The synthesis and consolidation of hard materials by spark plasma sintering. Int J Refract Metals Hard Mater 27(2):367–375CrossRef
57.
go back to reference Salamon D, Eriksson M, Nygren M, Shen Z (2007) Homogeneous TiB2 ceramic achieved by electric current-assisted self-propagating reaction sintering. J Am Ceram Soc 90(10):3303–3306CrossRef Salamon D, Eriksson M, Nygren M, Shen Z (2007) Homogeneous TiB2 ceramic achieved by electric current-assisted self-propagating reaction sintering. J Am Ceram Soc 90(10):3303–3306CrossRef
58.
go back to reference Locci AM, Licheri R, Orrù R, Cao G (2009) Reactive spark plasma sintering of rhenium diboride. Ceram Int 35(1):397–400CrossRef Locci AM, Licheri R, Orrù R, Cao G (2009) Reactive spark plasma sintering of rhenium diboride. Ceram Int 35(1):397–400CrossRef
59.
go back to reference Schmidt J, Boehling M, Burkhardt U, Grin Y (2007) Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate. Sci Technol Adv Mater 8(5):376–382CrossRef Schmidt J, Boehling M, Burkhardt U, Grin Y (2007) Preparation of titanium diboride TiB2 by spark plasma sintering at slow heating rate. Sci Technol Adv Mater 8(5):376–382CrossRef
60.
go back to reference Schmidt J, Niewa R, Schmidt M, Grin Y (2005) Spark plasma sintering effect on the decomposition of MgH2. J Am Ceram Soc 88(7):1870–1874CrossRef Schmidt J, Niewa R, Schmidt M, Grin Y (2005) Spark plasma sintering effect on the decomposition of MgH2. J Am Ceram Soc 88(7):1870–1874CrossRef
61.
go back to reference Noh JH, Jung HS, Cho IS, An JS, Cho CM, Han HS, Hong KS (2010) Enhancing the densification of nanocrystalline TiO2 by reduction in spark plasma sintering. J Am Ceram Soc 93(4):993–997CrossRef Noh JH, Jung HS, Cho IS, An JS, Cho CM, Han HS, Hong KS (2010) Enhancing the densification of nanocrystalline TiO2 by reduction in spark plasma sintering. J Am Ceram Soc 93(4):993–997CrossRef
62.
go back to reference Munir ZA (2000) Synthesis and densification of nanomaterials by mechanical and field activation. J Mater Synth Process 8(3–4):189–196CrossRef Munir ZA (2000) Synthesis and densification of nanomaterials by mechanical and field activation. J Mater Synth Process 8(3–4):189–196CrossRef
63.
go back to reference Anselmi-Tamburini U, Munir Z, Kodera Y, Imai T, Ohyanagi M (2005) Influence of synthesis temperature on the defect structure of boron carbide: experimental and modeling studies. J Am Ceram Soc 88(6):1382–1387CrossRef Anselmi-Tamburini U, Munir Z, Kodera Y, Imai T, Ohyanagi M (2005) Influence of synthesis temperature on the defect structure of boron carbide: experimental and modeling studies. J Am Ceram Soc 88(6):1382–1387CrossRef
64.
go back to reference Propescu B, Enache S, Ghica C, Valeanu M (2011) Solid-state synthesis and spark plasma sintering of SrZrO3 ceramics. J Alloys Compd 509(22):6395–6399CrossRef Propescu B, Enache S, Ghica C, Valeanu M (2011) Solid-state synthesis and spark plasma sintering of SrZrO3 ceramics. J Alloys Compd 509(22):6395–6399CrossRef
65.
go back to reference Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Experiments and modeling of spark plasma sintered functionally graded boron-carbide-aluminum composites. Mater Sci Eng A 488(1–2):333–338CrossRef Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Experiments and modeling of spark plasma sintered functionally graded boron-carbide-aluminum composites. Mater Sci Eng A 488(1–2):333–338CrossRef
66.
go back to reference Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Continuous functionally graded boron carbide-aluminum nanocomposites by spark plasma sintering. Mater Sci Eng A 493(1–2):251–255CrossRef Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Continuous functionally graded boron carbide-aluminum nanocomposites by spark plasma sintering. Mater Sci Eng A 493(1–2):251–255CrossRef
67.
go back to reference Roberts DJ, Zhao J, Munir ZA (2009) Mechanism of reactive sintering of MgAlB14 by pulse electric current. Int J Refract Metals Hard Mater 27(3):556–563CrossRef Roberts DJ, Zhao J, Munir ZA (2009) Mechanism of reactive sintering of MgAlB14 by pulse electric current. Int J Refract Metals Hard Mater 27(3):556–563CrossRef
68.
go back to reference Paris S, Gaffet E, Bernard F, Munir ZA (2004) Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides. Scr Mater 50(5):691–696CrossRef Paris S, Gaffet E, Bernard F, Munir ZA (2004) Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides. Scr Mater 50(5):691–696CrossRef
69.
go back to reference Bernard F, Le Gallet S, Spinassou N, Paris S, Gaffet E, Woolman JN, Munir ZA (2004) Dense nanostructured materials obtained by spark plasma sintering and field activated pressure assisted synthesis starting from mechanically activated powder mixtures. Sci Sinter 36(3):155–164CrossRef Bernard F, Le Gallet S, Spinassou N, Paris S, Gaffet E, Woolman JN, Munir ZA (2004) Dense nanostructured materials obtained by spark plasma sintering and field activated pressure assisted synthesis starting from mechanically activated powder mixtures. Sci Sinter 36(3):155–164CrossRef
70.
go back to reference Dudina DV, Hulbert DM, Jiang D, Unuvar C, Cytron SJ, Mukherjee AK (2008) In situ boron carbide-titanium diboride composites prepared by mechanical milling and subsequent spark plasma sintering. J Mate Sci 43(10):3569–3576CrossRef Dudina DV, Hulbert DM, Jiang D, Unuvar C, Cytron SJ, Mukherjee AK (2008) In situ boron carbide-titanium diboride composites prepared by mechanical milling and subsequent spark plasma sintering. J Mate Sci 43(10):3569–3576CrossRef
71.
go back to reference Licheri R, Orrù R, Locci AM, Cao G (2007) Efficient synthesis/sintering routes to obtain fully dense ZrB2–SiC Ultra-High-Temperature Ceramics (UHTCs). Ind Eng Chem Res 46:9087–9096CrossRef Licheri R, Orrù R, Locci AM, Cao G (2007) Efficient synthesis/sintering routes to obtain fully dense ZrB2–SiC Ultra-High-Temperature Ceramics (UHTCs). Ind Eng Chem Res 46:9087–9096CrossRef
72.
go back to reference Musa C, Orrù R, Sciti D, Silvestroni L, Cao G (2013) Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. J Eur Ceram Soc 33:603–614CrossRef Musa C, Orrù R, Sciti D, Silvestroni L, Cao G (2013) Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics. J Eur Ceram Soc 33:603–614CrossRef
73.
go back to reference Orrù R, Cao G (2013) Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materials. Materials 6:1566–1583CrossRef Orrù R, Cao G (2013) Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics (UHTC) materials. Materials 6:1566–1583CrossRef
74.
go back to reference Licheri R, Orrù R, Musa C, Cao G (2008) Combination of SHS and SPS techniques for fabrication of fully dense ZrB2-ZrC-SiC composites. Mater Lett 62(3):432–435CrossRef Licheri R, Orrù R, Musa C, Cao G (2008) Combination of SHS and SPS techniques for fabrication of fully dense ZrB2-ZrC-SiC composites. Mater Lett 62(3):432–435CrossRef
75.
go back to reference Licheri R, Orrù R, Musa C, Cao G (2010) Efficient technologies for the fabrication of dense TaB2-based ultra-high-temperature ceramics. Appl Mater Interfaces 2(8):2206–2212CrossRef Licheri R, Orrù R, Musa C, Cao G (2010) Efficient technologies for the fabrication of dense TaB2-based ultra-high-temperature ceramics. Appl Mater Interfaces 2(8):2206–2212CrossRef
76.
go back to reference Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRef Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1–2):1–184CrossRef
77.
go back to reference Kim JS, Choi HS, Dudina D, Lee JK, Kwon YS (2007) Spark plasma sintering of nanoscale (Ni+Al) powder mixture. Solid State Phenom 119:35–38CrossRef Kim JS, Choi HS, Dudina D, Lee JK, Kwon YS (2007) Spark plasma sintering of nanoscale (Ni+Al) powder mixture. Solid State Phenom 119:35–38CrossRef
78.
go back to reference Wang H, Lee SH, Kim HD (2012) Nano-hafnium diboride powders synthesized using a spark plasma sintering apparatus. J Am Ceram Soc 95(5):1493–1496CrossRef Wang H, Lee SH, Kim HD (2012) Nano-hafnium diboride powders synthesized using a spark plasma sintering apparatus. J Am Ceram Soc 95(5):1493–1496CrossRef
79.
go back to reference Stanciu L, Groza JR, Stoica L, Plapcianu C (2004) Influence of powder precursors on reaction sintering of Al2TiO5. Scr Mater 50(9):1259–1262CrossRef Stanciu L, Groza JR, Stoica L, Plapcianu C (2004) Influence of powder precursors on reaction sintering of Al2TiO5. Scr Mater 50(9):1259–1262CrossRef
80.
go back to reference Handtrack D, Despang F, Sauer C, Kieback B, Reinfried N, Grin Y (2006) Fabrication of ultra-fine grained and dispersion-strengthened titanium materials by spark plasma sintering. Mater Sci Eng A 437(2):423–429CrossRef Handtrack D, Despang F, Sauer C, Kieback B, Reinfried N, Grin Y (2006) Fabrication of ultra-fine grained and dispersion-strengthened titanium materials by spark plasma sintering. Mater Sci Eng A 437(2):423–429CrossRef
81.
go back to reference Locci AM, Orrù R, Cao G, Munir ZA (2006) Effect of ball milling on simultaneous sprak plasma synthesis and densification of TiC-TiB2 composites. Mater Sci Eng A 434(1–2):23–29CrossRef Locci AM, Orrù R, Cao G, Munir ZA (2006) Effect of ball milling on simultaneous sprak plasma synthesis and densification of TiC-TiB2 composites. Mater Sci Eng A 434(1–2):23–29CrossRef
82.
go back to reference Locci AM, Licheri R, Orrù R, Cincotti A, Cao G (2007) Mechanical and electric current activation of solid-state reactions for the synthesis of fully dense advanced materials. Chem Eng Sci 62(18–20):4885–4890CrossRef Locci AM, Licheri R, Orrù R, Cincotti A, Cao G (2007) Mechanical and electric current activation of solid-state reactions for the synthesis of fully dense advanced materials. Chem Eng Sci 62(18–20):4885–4890CrossRef
83.
go back to reference Heian EM, Khalsa SK, Lee JW, Munir ZA, Yamamoto T, Ohyanagi M (2004) Synthesis of dense, high-defect-concentration B4C through mechanical activation and field-assisted combustion. J Am Ceram Soc 87(5):779–783CrossRef Heian EM, Khalsa SK, Lee JW, Munir ZA, Yamamoto T, Ohyanagi M (2004) Synthesis of dense, high-defect-concentration B4C through mechanical activation and field-assisted combustion. J Am Ceram Soc 87(5):779–783CrossRef
84.
go back to reference Koizumi Y, Tanaka T, Minamino Y, Tsuji N, Mizuuchi K, Ohkanda Y (2003) Densification and structural evolution in spark plasma sintering process of mechanically alloyed nanocrystalline Fe-23Al-6C powder. Mater Trans 44(8):1604–1612CrossRef Koizumi Y, Tanaka T, Minamino Y, Tsuji N, Mizuuchi K, Ohkanda Y (2003) Densification and structural evolution in spark plasma sintering process of mechanically alloyed nanocrystalline Fe-23Al-6C powder. Mater Trans 44(8):1604–1612CrossRef
85.
go back to reference Ishihara S, Zhang W, Kimura H, Omori M, Inoue A (2003) Consolidation of Fe–Co–Nd–Dy–B glassy powders by spark-plasma sintering and magnetic properties of the consolidated alloys. Mater Trans 44(1):138–143CrossRef Ishihara S, Zhang W, Kimura H, Omori M, Inoue A (2003) Consolidation of Fe–Co–Nd–Dy–B glassy powders by spark-plasma sintering and magnetic properties of the consolidated alloys. Mater Trans 44(1):138–143CrossRef
86.
go back to reference Perrière L, Thai MT, Tusseau-Nenez S, Blétry M, Champion Y (2011) Spark plasma sintering of a Zr-based metallic glass. Adv Mater Eng 13(7):581–586CrossRef Perrière L, Thai MT, Tusseau-Nenez S, Blétry M, Champion Y (2011) Spark plasma sintering of a Zr-based metallic glass. Adv Mater Eng 13(7):581–586CrossRef
87.
go back to reference Duan RG, Kuntz JD, Garay JE, Mukherjee AK (2004) Metal-like electrical conductivity in ceramic nano-composite. Scr Mater 50(10):1309–1313CrossRef Duan RG, Kuntz JD, Garay JE, Mukherjee AK (2004) Metal-like electrical conductivity in ceramic nano-composite. Scr Mater 50(10):1309–1313CrossRef
88.
go back to reference Duan RG, Garay JE, Kuntz JD, Mukherjee AK (2005) Electrically conductive in situ formed nano-Si3N4/SiC/TiCxN1−x ceramic composite consolidated by pulse electric current sintering (PECS). J Am Ceram Soc 88(1):66–70CrossRef Duan RG, Garay JE, Kuntz JD, Mukherjee AK (2005) Electrically conductive in situ formed nano-Si3N4/SiC/TiCxN1−x ceramic composite consolidated by pulse electric current sintering (PECS). J Am Ceram Soc 88(1):66–70CrossRef
89.
go back to reference Zhang J, Wang L, Shi L, Jiang W, Chen L (2007) Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method. Scr Mater 56(3):241–244CrossRef Zhang J, Wang L, Shi L, Jiang W, Chen L (2007) Rapid fabrication of Ti3SiC2–SiC nanocomposite using the spark plasma sintering-reactive synthesis (SPS-RS) method. Scr Mater 56(3):241–244CrossRef
90.
go back to reference Wang L, Zhang J, Jiang W (2013) Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Metals Hard Mater 39:103–112CrossRef Wang L, Zhang J, Jiang W (2013) Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering. Int J Refract Metals Hard Mater 39:103–112CrossRef
91.
go back to reference Wang L, Wu T, Jiang W, Li J, Chen L (2006) Novel fabrication route to Al2O3–TiN nanocomposites via spark plasma sintering. J Am Ceram Soc 89(5):1540–1543CrossRef Wang L, Wu T, Jiang W, Li J, Chen L (2006) Novel fabrication route to Al2O3–TiN nanocomposites via spark plasma sintering. J Am Ceram Soc 89(5):1540–1543CrossRef
92.
go back to reference Isupov VP, Сhupakhina LE, Mitrofanova RP, Tarasov KA, Rogachev AY, Boldyrev VV (1997) The use of intercalation compounds of aluminium hydroxide for the preparation of nanoscale systems. Solid State Ionics 101–103(1):265–270CrossRef Isupov VP, Сhupakhina LE, Mitrofanova RP, Tarasov KA, Rogachev AY, Boldyrev VV (1997) The use of intercalation compounds of aluminium hydroxide for the preparation of nanoscale systems. Solid State Ionics 101–103(1):265–270CrossRef
93.
go back to reference Bokhonov BB, Burleva LP, Whitcomb DR, Usanov YE (2001) Formation of nano-sized silver particles during thermal and photochemical decomposition of silver carboxylates. J Imaging Sci Technol 45(3):259–266 Bokhonov BB, Burleva LP, Whitcomb DR, Usanov YE (2001) Formation of nano-sized silver particles during thermal and photochemical decomposition of silver carboxylates. J Imaging Sci Technol 45(3):259–266
94.
go back to reference Sun SK, Kan YM, Zhang GJ (2011) Fabrication of nanosized tungsten carbide ceramics by reactive spark plasma sintering. J Am Ceram Soc 94(10):3230–3233CrossRef Sun SK, Kan YM, Zhang GJ (2011) Fabrication of nanosized tungsten carbide ceramics by reactive spark plasma sintering. J Am Ceram Soc 94(10):3230–3233CrossRef
95.
go back to reference Ran S, Van der Biest O, Vleugels J (2010) ZrB2–SiC composites prepared by reactive pulsed electric current sintering. J Eur Ceram Soc 30(12):2633–2642CrossRef Ran S, Van der Biest O, Vleugels J (2010) ZrB2–SiC composites prepared by reactive pulsed electric current sintering. J Eur Ceram Soc 30(12):2633–2642CrossRef
96.
go back to reference Chen W, Tojo T, Miyamoto Y (2012) SiC ceramic-bonded carbon fabricated with Si3N4 and carbon powders. Int J Appl Ceram Technol 9(2):313–321CrossRef Chen W, Tojo T, Miyamoto Y (2012) SiC ceramic-bonded carbon fabricated with Si3N4 and carbon powders. Int J Appl Ceram Technol 9(2):313–321CrossRef
97.
go back to reference Zhao Y, Taya M (2006) Processing of porous NiTi by spark plasma sintering method. Proc SPIE 6170:313–318 Zhao Y, Taya M (2006) Processing of porous NiTi by spark plasma sintering method. Proc SPIE 6170:313–318
98.
go back to reference Miao X, Chen Y, Guo H, Khor KA (2004) Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram Int 30(7):1793–1796CrossRef Miao X, Chen Y, Guo H, Khor KA (2004) Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram Int 30(7):1793–1796CrossRef
99.
go back to reference Honda H, Kobayashi K, Inoue K, Ishiyama M (1967) Electrical discharge sintering and graphitization of carbon powders. Carbon 5(5):545–546CrossRef Honda H, Kobayashi K, Inoue K, Ishiyama M (1967) Electrical discharge sintering and graphitization of carbon powders. Carbon 5(5):545–546CrossRef
100.
go back to reference Asaka K, Karita M, Saito Y (2011) Graphitization of amorphous carbon on a multiwall carbon nanotube surface by catalyst-free heating. Appl Phys Lett 99:091907CrossRef Asaka K, Karita M, Saito Y (2011) Graphitization of amorphous carbon on a multiwall carbon nanotube surface by catalyst-free heating. Appl Phys Lett 99:091907CrossRef
101.
go back to reference Toyofuku N, Nishimoto M, Arayama K, Kodera Y, Ohyanagi M, Munir Z (2010) Consolidation of carbon with amorphous graphite transformation by SPS. In: Munir ZA, Ohji T, Hotta Y, Singh M (eds) Innovative processing and manufacturing of advanced ceramics and composites: ceramic transactions 2010. Wiley, Hoboken, NJ, pp 32–40 Toyofuku N, Nishimoto M, Arayama K, Kodera Y, Ohyanagi M, Munir Z (2010) Consolidation of carbon with amorphous graphite transformation by SPS. In: Munir ZA, Ohji T, Hotta Y, Singh M (eds) Innovative processing and manufacturing of advanced ceramics and composites: ceramic transactions 2010. Wiley, Hoboken, NJ, pp 32–40
102.
go back to reference Kim WS, Moon SY, Park NH, Huh H, Shim KB, Ham H (2011) Electrical and structural feature of monolayer graphene produced by pulse current unzipping and microwave exfoliation of carbon nanotubes. Chem Mater 23:940–944CrossRef Kim WS, Moon SY, Park NH, Huh H, Shim KB, Ham H (2011) Electrical and structural feature of monolayer graphene produced by pulse current unzipping and microwave exfoliation of carbon nanotubes. Chem Mater 23:940–944CrossRef
103.
go back to reference Sribalajia M, Mukherjee B, Rao Bakshi S, Arunkumar P, Suresh Babu K, Kumar Keshri A (2017) In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite. Compos Part B 123:227–240CrossRef Sribalajia M, Mukherjee B, Rao Bakshi S, Arunkumar P, Suresh Babu K, Kumar Keshri A (2017) In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite. Compos Part B 123:227–240CrossRef
104.
go back to reference Huang Q, Jiang D, Ovid’ko IA, Mukherjee A (2010) High-current-induced damage on carbon nanotubes: the case during spark plasma sintering. Scr Mater 63:1181–1184CrossRef Huang Q, Jiang D, Ovid’ko IA, Mukherjee A (2010) High-current-induced damage on carbon nanotubes: the case during spark plasma sintering. Scr Mater 63:1181–1184CrossRef
105.
go back to reference Zhang F, Shen J, Sun J, Zhu YQ, Wang G, McCartney G (2005) Conversion of carbon nanotubes to diamond by spark plasma sintering. Carbon 43(6):1254–1258CrossRef Zhang F, Shen J, Sun J, Zhu YQ, Wang G, McCartney G (2005) Conversion of carbon nanotubes to diamond by spark plasma sintering. Carbon 43(6):1254–1258CrossRef
106.
go back to reference Zhang F, Mihoc C, Ahmed F, Lathe C, Burkel E (2011) Thermal stability of carbon nanotubes, fullerene and graphite under spark plasma sintering. Chem Phys Lett 510:109–114CrossRef Zhang F, Mihoc C, Ahmed F, Lathe C, Burkel E (2011) Thermal stability of carbon nanotubes, fullerene and graphite under spark plasma sintering. Chem Phys Lett 510:109–114CrossRef
107.
go back to reference Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, Todd RI (2015) Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci Rep 5:8513CrossRef Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A, Todd RI (2015) Ultra-fast and energy-efficient sintering of ceramics by electric current concentration. Sci Rep 5:8513CrossRef
108.
go back to reference Solodkyi I, Xie SS, Zhao T, Borodianska H, Sakka Y, Vasylkiv O (2013) Synthesis of B6O powder and spark plasma sintering of B6O and B6O–B4C ceramics. J Ceram Soc Jpn 121(11):950–955CrossRef Solodkyi I, Xie SS, Zhao T, Borodianska H, Sakka Y, Vasylkiv O (2013) Synthesis of B6O powder and spark plasma sintering of B6O and B6O–B4C ceramics. J Ceram Soc Jpn 121(11):950–955CrossRef
109.
go back to reference Mouawad B, Soueidan M, Fabrègue D, Buttay C, Bley V, Allard B, Morel H (2012) Full densification of molybdenum powders using spark plasma sintering. Metall Mater Trans A 43(9):3402–3409CrossRef Mouawad B, Soueidan M, Fabrègue D, Buttay C, Bley V, Allard B, Morel H (2012) Full densification of molybdenum powders using spark plasma sintering. Metall Mater Trans A 43(9):3402–3409CrossRef
110.
go back to reference Hayashi T, Matsuura K, Ohno M (2013) TiC coating on titanium by carbonization reaction using spark plasma sintering. Mater Trans 54(11):2098–2101CrossRef Hayashi T, Matsuura K, Ohno M (2013) TiC coating on titanium by carbonization reaction using spark plasma sintering. Mater Trans 54(11):2098–2101CrossRef
111.
go back to reference Grasso S, Poetschke J, Richter V, Maizza G, Sakka Y, Reece MJ (2013) Low-temperature spark plasma sintering of pure nano WC powder. J Am Ceram Soc 96(6):1702–1705CrossRef Grasso S, Poetschke J, Richter V, Maizza G, Sakka Y, Reece MJ (2013) Low-temperature spark plasma sintering of pure nano WC powder. J Am Ceram Soc 96(6):1702–1705CrossRef
112.
go back to reference Lee G, McKittrick J, Ivanov E, Olevsky EA (2016) Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering. Int J Refract Metals Hard Mater 61:22–29CrossRef Lee G, McKittrick J, Ivanov E, Olevsky EA (2016) Densification mechanism and mechanical properties of tungsten powder consolidated by spark plasma sintering. Int J Refract Metals Hard Mater 61:22–29CrossRef
113.
go back to reference Mackie AJ, Hatton GD, Hamilton HGC, Dean JS, Goodall R (2016) Carbon uptake and distribution in spark plasma sintering (SPS) processed Sm(Co, Fe, Cu, Zr)z. Mater Lett 171:14–17CrossRef Mackie AJ, Hatton GD, Hamilton HGC, Dean JS, Goodall R (2016) Carbon uptake and distribution in spark plasma sintering (SPS) processed Sm(Co, Fe, Cu, Zr)z. Mater Lett 171:14–17CrossRef
114.
go back to reference Boulnat X, Fabrègue D, Perez M, Urvoy S, Hamon D, de Carlan Y (2014) Assessment of consolidation of oxide dispersion strengthened ferritic steels by spark plasma sintering: from laboratory scale to industrial products. Powder Metall 57(3):204–211CrossRef Boulnat X, Fabrègue D, Perez M, Urvoy S, Hamon D, de Carlan Y (2014) Assessment of consolidation of oxide dispersion strengthened ferritic steels by spark plasma sintering: from laboratory scale to industrial products. Powder Metall 57(3):204–211CrossRef
115.
go back to reference Neamţu BV, Marinca TF, Chicinaş I, Isnard O, Popa F, Pǎşcuţǎ P (2014) Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder. J Alloys Compd 600:1–7CrossRef Neamţu BV, Marinca TF, Chicinaş I, Isnard O, Popa F, Pǎşcuţǎ P (2014) Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder. J Alloys Compd 600:1–7CrossRef
116.
go back to reference Rodriguez-Suarez T, Díaz LA, Torrecillas R, Lopez-Esteban S, Tuan WH, Nygren M, Moya JS (2009) Alumina/tungsten nanocomposites obtained by spark plasma sintering. Compos Sci Technol 69:2467–2473CrossRef Rodriguez-Suarez T, Díaz LA, Torrecillas R, Lopez-Esteban S, Tuan WH, Nygren M, Moya JS (2009) Alumina/tungsten nanocomposites obtained by spark plasma sintering. Compos Sci Technol 69:2467–2473CrossRef
117.
go back to reference Bokhonov BB, Ukhina AV, Dudina DV, Anisimov AG, Mali VI, Batraev IS (2015) Carbon uptake during spark plasma sintering: investigation through the analysis of the carbide “footprint” in a Ni–W alloy. RSC Adv 5:80228–80237CrossRef Bokhonov BB, Ukhina AV, Dudina DV, Anisimov AG, Mali VI, Batraev IS (2015) Carbon uptake during spark plasma sintering: investigation through the analysis of the carbide “footprint” in a Ni–W alloy. RSC Adv 5:80228–80237CrossRef
118.
go back to reference Dudina DV, Bokhonov BB, Ukhina AV, Anisimov AG, Mali VI, Esikov MA, Batraev IS, Kuznechik OO, Pilinevich LP (2016) Reactivity of materials towards carbon of graphite foil during spark plasma sintering: a case study using Ni–W powders. Mater Lett 168:62–67CrossRef Dudina DV, Bokhonov BB, Ukhina AV, Anisimov AG, Mali VI, Esikov MA, Batraev IS, Kuznechik OO, Pilinevich LP (2016) Reactivity of materials towards carbon of graphite foil during spark plasma sintering: a case study using Ni–W powders. Mater Lett 168:62–67CrossRef
119.
go back to reference Singleton M, Nash P (1989) The C–Ni (carbon–nickel) system. Bull Alloy Phase Diagrams 10:121–126CrossRef Singleton M, Nash P (1989) The C–Ni (carbon–nickel) system. Bull Alloy Phase Diagrams 10:121–126CrossRef
120.
go back to reference Collet R, le Gallet S, Charlot F, Lay S, Chaix JM, Bernard F (2016) Oxide reduction effects in SPS processing of Cu atomized powder containing oxide inclusions. Mater Chem Phys 173:498–507CrossRef Collet R, le Gallet S, Charlot F, Lay S, Chaix JM, Bernard F (2016) Oxide reduction effects in SPS processing of Cu atomized powder containing oxide inclusions. Mater Chem Phys 173:498–507CrossRef
121.
go back to reference Shearwood C, Ng HB (2007) Spark plasma sintering of wire exploded tungsten nano-powder. Proc SPIE 6798:67981BCrossRef Shearwood C, Ng HB (2007) Spark plasma sintering of wire exploded tungsten nano-powder. Proc SPIE 6798:67981BCrossRef
122.
go back to reference Toyofuku N, Kuramoto T, Imai T, Ohyanagi M, Munir ZA (2012) Effect of pulsed DC current on neck growth between tungsten wires and tungsten plates during the initial stage of sintering by the spark plasma sintering method. J Mater Sci 47:2201–2205CrossRef Toyofuku N, Kuramoto T, Imai T, Ohyanagi M, Munir ZA (2012) Effect of pulsed DC current on neck growth between tungsten wires and tungsten plates during the initial stage of sintering by the spark plasma sintering method. J Mater Sci 47:2201–2205CrossRef
123.
go back to reference Dudina DV, Anisimov AG, Mali VI, Bulina NV, Bokhonov BB (2015) Smaller crystallites in sintered materials? A discussion of the possible mechanisms of crystallite size refinement during pulsed electric current-assisted sintering. Mater Lett 144:168–172CrossRef Dudina DV, Anisimov AG, Mali VI, Bulina NV, Bokhonov BB (2015) Smaller crystallites in sintered materials? A discussion of the possible mechanisms of crystallite size refinement during pulsed electric current-assisted sintering. Mater Lett 144:168–172CrossRef
124.
go back to reference Dudina DV, Bokhonov BB (2017) Elimination of oxide films during spark plasma sintering of metallic powders: a case study using partially oxidized nickel. Adv Powder Technol 28:641–647CrossRef Dudina DV, Bokhonov BB (2017) Elimination of oxide films during spark plasma sintering of metallic powders: a case study using partially oxidized nickel. Adv Powder Technol 28:641–647CrossRef
125.
go back to reference Bertrand A, Carreaud J, Delaizir G, Duclère JR, Colas M, Cornette J, Vandenhende M, Couderc V, Thomas P (2013) A comprehensive study of the carbon contamination in tellurite glasses and glass–ceramics sintered by spark plasma sintering (SPS). J Am Ceram Soc 97:163–172CrossRef Bertrand A, Carreaud J, Delaizir G, Duclère JR, Colas M, Cornette J, Vandenhende M, Couderc V, Thomas P (2013) A comprehensive study of the carbon contamination in tellurite glasses and glass–ceramics sintered by spark plasma sintering (SPS). J Am Ceram Soc 97:163–172CrossRef
126.
go back to reference Bernard-Granger G, Benameur N, Guizard C, Nygren M (2009) Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr Mater 60:164–167CrossRef Bernard-Granger G, Benameur N, Guizard C, Nygren M (2009) Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering. Scr Mater 60:164–167CrossRef
127.
go back to reference Morita K, Kim BN, Yoshida H, Hiraga K, Sakka Y (2015) Spectroscopic study of the discoloration of transparent MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS) processing. Acta Mater 84:9–19CrossRef Morita K, Kim BN, Yoshida H, Hiraga K, Sakka Y (2015) Spectroscopic study of the discoloration of transparent MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS) processing. Acta Mater 84:9–19CrossRef
128.
go back to reference Morita K, Kim BN, Yoshida H, Hiraga K, Sakka Y (2016) Influence of pre- and post-annealing on discoloration of MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS). J Eur Ceram Soc 36(12):2961–2968CrossRef Morita K, Kim BN, Yoshida H, Hiraga K, Sakka Y (2016) Influence of pre- and post-annealing on discoloration of MgAl2O4 spinel fabricated by spark-plasma-sintering (SPS). J Eur Ceram Soc 36(12):2961–2968CrossRef
129.
go back to reference Jiang D, Mukherjee AK (2011) The influence of oxygen vacancy on the optical transmission of an yttria–magnesia nanocomposite. Scr Mater 64(12):1095–1097CrossRef Jiang D, Mukherjee AK (2011) The influence of oxygen vacancy on the optical transmission of an yttria–magnesia nanocomposite. Scr Mater 64(12):1095–1097CrossRef
130.
go back to reference Isobe T, Daimon K, Sato T, Matsubara T, Hikichi Y, Ota T (2008) Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties. Ceram Int 34(1):213–217CrossRef Isobe T, Daimon K, Sato T, Matsubara T, Hikichi Y, Ota T (2008) Spark plasma sintering technique for reaction sintering of Al2O3/Ni nanocomposite and its mechanical properties. Ceram Int 34(1):213–217CrossRef
131.
go back to reference Rong CB, Nandwana V, Poudyal N, Liu JP, Saito T, Wu Y, Kramer MJ (2007) Bulk FePt/Fe3Pt nanocomposite magnets prepared by spark plasma sintering. J Appl Phys 101:09K515 3 pCrossRef Rong CB, Nandwana V, Poudyal N, Liu JP, Saito T, Wu Y, Kramer MJ (2007) Bulk FePt/Fe3Pt nanocomposite magnets prepared by spark plasma sintering. J Appl Phys 101:09K515 3 pCrossRef
132.
go back to reference Ramírez C, Vega-Diaz SM, Morelos-Gómez A, Figueiredo FM, Terrones M, Isabel Osendi M, Belmonte M, Miranzo P (2013) Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon 57:425–432CrossRef Ramírez C, Vega-Diaz SM, Morelos-Gómez A, Figueiredo FM, Terrones M, Isabel Osendi M, Belmonte M, Miranzo P (2013) Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon 57:425–432CrossRef
133.
go back to reference Li H, Khor KA, Yu LG, Cheang P (2005) Microstructure modifications and phase transformation in plasma-sprayed WC-Co coatings following post-spray spark plasma sintering. Surf Coat Technol 194(1):96–102CrossRef Li H, Khor KA, Yu LG, Cheang P (2005) Microstructure modifications and phase transformation in plasma-sprayed WC-Co coatings following post-spray spark plasma sintering. Surf Coat Technol 194(1):96–102CrossRef
134.
go back to reference Gurt Santanach J, Estournès C, Weibel A, Peigney A, Chevallier G, Laurent C (2009) Spark plasma sintering as a reactive sintering tool for the preparation of surface-tailored Fe-FeAl2O4-Al2O3 nanocomposites. Scr Mater 60(4):195–198CrossRef Gurt Santanach J, Estournès C, Weibel A, Peigney A, Chevallier G, Laurent C (2009) Spark plasma sintering as a reactive sintering tool for the preparation of surface-tailored Fe-FeAl2O4-Al2O3 nanocomposites. Scr Mater 60(4):195–198CrossRef
135.
go back to reference Gurt Santanach J, Estournès C, Weibel A, Chevallier G, Bley V, Laurent C, Peigney A (2011) Influence of pulse current during spark plasma sintering evidenced on reactive alumina-hematite powder. J Eur Ceram Soc 31(13):2247–2254CrossRef Gurt Santanach J, Estournès C, Weibel A, Chevallier G, Bley V, Laurent C, Peigney A (2011) Influence of pulse current during spark plasma sintering evidenced on reactive alumina-hematite powder. J Eur Ceram Soc 31(13):2247–2254CrossRef
136.
go back to reference Kakegawa K, Wen CM, Uekawa N, Kojima T (2014) SPS using SiC die. Key Eng Mater 617:72–77CrossRef Kakegawa K, Wen CM, Uekawa N, Kojima T (2014) SPS using SiC die. Key Eng Mater 617:72–77CrossRef
137.
go back to reference Byon C, Li MH, Kakegawa K, Han YH, Lee DY (2015) Numerical study of a SiC mould subjected to a spark plasma sintering process. Scr Mater 96:49–52CrossRef Byon C, Li MH, Kakegawa K, Han YH, Lee DY (2015) Numerical study of a SiC mould subjected to a spark plasma sintering process. Scr Mater 96:49–52CrossRef
138.
go back to reference Bokhonov BB, Ukhina AV, Dudina DV, Gerasimov KB, Anisimov AG, Mali VI (2015) Towards a better understanding of nickel/diamond interactions: the interface formation at low temperature. RSC Adv 5:51799–51806CrossRef Bokhonov BB, Ukhina AV, Dudina DV, Gerasimov KB, Anisimov AG, Mali VI (2015) Towards a better understanding of nickel/diamond interactions: the interface formation at low temperature. RSC Adv 5:51799–51806CrossRef
139.
go back to reference Dudina DV, Mali VI, Ukhina AV, Anisimov AG, Brester AE, Bokhonov B (2016) Inter-particle interactions in partially densified compacts of electrically conductive materials during spark plasma sintering. In: Proceedings of the 11th International Forum on Strategic Technology, IFOST 2016, Article number 7884067, pp 139–143 Dudina DV, Mali VI, Ukhina AV, Anisimov AG, Brester AE, Bokhonov B (2016) Inter-particle interactions in partially densified compacts of electrically conductive materials during spark plasma sintering. In: Proceedings of the 11th International Forum on Strategic Technology, IFOST 2016, Article number 7884067, pp 139–143
140.
go back to reference Feng H, Zhou Y, Jia D, Meng Q (2005) Rapid synthesis of Ti alloy with B addition by spark plasma sintering. Mater Sci Eng A 390(1–2):344–349CrossRef Feng H, Zhou Y, Jia D, Meng Q (2005) Rapid synthesis of Ti alloy with B addition by spark plasma sintering. Mater Sci Eng A 390(1–2):344–349CrossRef
141.
go back to reference Feng H, Jia D, Zhou Y (2005) Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Compos Part A 36(5):558–563CrossRef Feng H, Jia D, Zhou Y (2005) Spark plasma sintering reaction synthesized TiB reinforced titanium matrix composites. Compos Part A 36(5):558–563CrossRef
142.
go back to reference Zhang HW, Gopalan R, Mukai T, Hono K (2005) Fabrication of bulk nanocrystalline Fe-C alloy by spark plasma sintering of mechanically milled powder. Scr Mater 53(7):863–868CrossRef Zhang HW, Gopalan R, Mukai T, Hono K (2005) Fabrication of bulk nanocrystalline Fe-C alloy by spark plasma sintering of mechanically milled powder. Scr Mater 53(7):863–868CrossRef
143.
go back to reference Zhang Z, Shen X, Wang F, Lee S (2011) A new rapid route for in situ synthesizing monolithic TiB ceramic. J Am Ceram Soc 94(9):2754–2756CrossRef Zhang Z, Shen X, Wang F, Lee S (2011) A new rapid route for in situ synthesizing monolithic TiB ceramic. J Am Ceram Soc 94(9):2754–2756CrossRef
144.
go back to reference Lee JW, Munir ZA, Shbuya M, Ohyanagi M (2001) Synthesis of dense TiB2-TiN nanocrystalline composites through mechanical and field activation. J Am Ceram Soc 84(6):1209–1216CrossRef Lee JW, Munir ZA, Shbuya M, Ohyanagi M (2001) Synthesis of dense TiB2-TiN nanocrystalline composites through mechanical and field activation. J Am Ceram Soc 84(6):1209–1216CrossRef
145.
go back to reference Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2011) In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering. J Eur Ceram Soc 31(4):637–644CrossRef Huang SG, Vanmeensel K, Van der Biest O, Vleugels J (2011) In situ synthesis and densification of submicrometer-grained B4C–TiB2 composites by pulsed electric current sintering. J Eur Ceram Soc 31(4):637–644CrossRef
146.
go back to reference Cabouro G, Chevalier S, Gaffet E, Grin Y, Bernard F (2008) Reactive sintering of molybdenum disilicide by spark plasma sintering from mechanically activated powder mixtures: processing parameters and properties. J Alloys Compd 465(1–2):344–355CrossRef Cabouro G, Chevalier S, Gaffet E, Grin Y, Bernard F (2008) Reactive sintering of molybdenum disilicide by spark plasma sintering from mechanically activated powder mixtures: processing parameters and properties. J Alloys Compd 465(1–2):344–355CrossRef
147.
go back to reference Campayo L, Le Gallet S, Grin Y, Courtois E, Bernard F, Bart F (2009) Spark plasma sintering of lead phosphovanadate Pb3(VO4)1.6(PO4)0.4. J Eur Ceram Soc 29(8):1477–1484CrossRef Campayo L, Le Gallet S, Grin Y, Courtois E, Bernard F, Bart F (2009) Spark plasma sintering of lead phosphovanadate Pb3(VO4)1.6(PO4)0.4. J Eur Ceram Soc 29(8):1477–1484CrossRef
148.
go back to reference Le Gallet S, Campayo L, Courtois E, Hoffmann S, Grin Y, Bernard F, Bart F (2010) Spark plasma sintering of iodine-bearing apatite. J Nucl Mater 400(3):251–256CrossRef Le Gallet S, Campayo L, Courtois E, Hoffmann S, Grin Y, Bernard F, Bart F (2010) Spark plasma sintering of iodine-bearing apatite. J Nucl Mater 400(3):251–256CrossRef
149.
go back to reference Beekman M, Baitinger M, Borrmann H, Schnelle W, Meier K, Nolas GS, Grin Y (2009) Preparation and crystal growth of Na24Si136. J Am Chem Soc 131:9642–9643CrossRef Beekman M, Baitinger M, Borrmann H, Schnelle W, Meier K, Nolas GS, Grin Y (2009) Preparation and crystal growth of Na24Si136. J Am Chem Soc 131:9642–9643CrossRef
150.
go back to reference Chakravarty D, Ramesh H, Rao TN (2009) High strength porous alumina by spark plasma sintering. J Eur Ceram Soc 29:1361–1369CrossRef Chakravarty D, Ramesh H, Rao TN (2009) High strength porous alumina by spark plasma sintering. J Eur Ceram Soc 29:1361–1369CrossRef
151.
go back to reference Oh ST, Tajima K, Ando M, Ohji T (2000) Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing. J Am Ceram Soc 83(5):1314–1316CrossRef Oh ST, Tajima K, Ando M, Ohji T (2000) Strengthening of porous alumina by pulse electric current sintering and nanocomposite processing. J Am Ceram Soc 83(5):1314–1316CrossRef
152.
go back to reference Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering for the production of nanostructured materials. In: Sinha S, Navani NK (eds) Nanotechnology series, vol. 4: Nanomaterials and nanostructures. Studium Press LLC, Houston, TX, pp 237–264 Dudina DV, Mukherjee AK (2013) Reactive spark plasma sintering for the production of nanostructured materials. In: Sinha S, Navani NK (eds) Nanotechnology series, vol. 4: Nanomaterials and nanostructures. Studium Press LLC, Houston, TX, pp 237–264
153.
go back to reference Galy J, Dolle M, Hungria T, Rozier P, Monchoux JP (2008) A new way to make solid state chemistry: spark plasma synthesis of copper or silver vanadium oxide bronzes. Solid State Sci 10(8):976–981CrossRef Galy J, Dolle M, Hungria T, Rozier P, Monchoux JP (2008) A new way to make solid state chemistry: spark plasma synthesis of copper or silver vanadium oxide bronzes. Solid State Sci 10(8):976–981CrossRef
154.
go back to reference Dumont-Botto E, Bourbon C, Patoux S, Rozier P, Dolle M (2011) Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries. J Power Sources 196(4):2274–2278CrossRef Dumont-Botto E, Bourbon C, Patoux S, Rozier P, Dolle M (2011) Synthesis by spark plasma sintering: a new way to obtain electrode materials for lithium ion batteries. J Power Sources 196(4):2274–2278CrossRef
155.
go back to reference Liu W, Naka M (2003) In situ joining of dissimilar nanocrystalline materials by spark plasma sintering. Scr Mater 48(9):1225–1230CrossRef Liu W, Naka M (2003) In situ joining of dissimilar nanocrystalline materials by spark plasma sintering. Scr Mater 48(9):1225–1230CrossRef
156.
go back to reference Matsubara T, Shibutani T, Uenishi K, Kobayashi KF (2002) Fabrication of TiB2 reinforced Al3Ti composite layer on Ti substrate by reactive-pulsed electric current sintering. Mater Sci Eng A 329–331:84–91CrossRef Matsubara T, Shibutani T, Uenishi K, Kobayashi KF (2002) Fabrication of TiB2 reinforced Al3Ti composite layer on Ti substrate by reactive-pulsed electric current sintering. Mater Sci Eng A 329–331:84–91CrossRef
157.
go back to reference Mulukutla M, Singh A, Harimkar S (2010) Spark plasma sintering for multi-scale surface engineering of materials. JOM 62(6):65–71CrossRef Mulukutla M, Singh A, Harimkar S (2010) Spark plasma sintering for multi-scale surface engineering of materials. JOM 62(6):65–71CrossRef
158.
go back to reference Holland T, Hulbert D, Anselmi-Tamburini U, Mukherjee AK (2010) Functionally graded boron-carbide and aluminum composites with tubular geometries using pulsed electric current sintering. Mater Sci Eng A 527(18–19):4543–4545CrossRef Holland T, Hulbert D, Anselmi-Tamburini U, Mukherjee AK (2010) Functionally graded boron-carbide and aluminum composites with tubular geometries using pulsed electric current sintering. Mater Sci Eng A 527(18–19):4543–4545CrossRef
159.
go back to reference Yuan H, Li J, Shen Q, Zhang L (2012) In situ synthesis and sintering of ZrB2 porous ceramics by the spark plasma sintering–reactive synthesis (SPS–RS) method. Int J Refract Metals Hard Mater 34:3–7CrossRef Yuan H, Li J, Shen Q, Zhang L (2012) In situ synthesis and sintering of ZrB2 porous ceramics by the spark plasma sintering–reactive synthesis (SPS–RS) method. Int J Refract Metals Hard Mater 34:3–7CrossRef
160.
go back to reference Dudina DV, Bokhonov BB, Mukherjee AK (2016) Formation of aluminum particles with shell morphology during pressureless spark plasma sintering of Fe-Al mixtures: current-related or Kirkendall effect? Materials 9:375 10 pCrossRef Dudina DV, Bokhonov BB, Mukherjee AK (2016) Formation of aluminum particles with shell morphology during pressureless spark plasma sintering of Fe-Al mixtures: current-related or Kirkendall effect? Materials 9:375 10 pCrossRef
161.
go back to reference Dudina DV, Legan MA, Fedorova NV, Novoselov AN, Anisimov AG, Esikov MA (2017) Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless spark plasma sintering. Mater Sci Eng A 695:309–314CrossRef Dudina DV, Legan MA, Fedorova NV, Novoselov AN, Anisimov AG, Esikov MA (2017) Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless spark plasma sintering. Mater Sci Eng A 695:309–314CrossRef
162.
go back to reference Dudina DV, Bokhonov BB, Legan MA, Novoselov AN, Skovorodin IN, Bulina NV, Esikov MA, Mali VI (2017) Analysis of the formation of FeAl with a high open porosity during electric current-assisted sintering of loosely packed Fe-Al powder. Vacuum 146:74–78CrossRef Dudina DV, Bokhonov BB, Legan MA, Novoselov AN, Skovorodin IN, Bulina NV, Esikov MA, Mali VI (2017) Analysis of the formation of FeAl with a high open porosity during electric current-assisted sintering of loosely packed Fe-Al powder. Vacuum 146:74–78CrossRef
163.
go back to reference Scheele M, Oeschler N, Veremchuk I, Peters S, Littig A, Kornowski A, Klinke C, Weller H (2011) Thermoelectric properties of lead chalcogenide core-shell nanostructures. ACS Nano 5:8541–8551CrossRef Scheele M, Oeschler N, Veremchuk I, Peters S, Littig A, Kornowski A, Klinke C, Weller H (2011) Thermoelectric properties of lead chalcogenide core-shell nanostructures. ACS Nano 5:8541–8551CrossRef
164.
go back to reference Bokhonov BB, Dudina DV (2017) Preparation of porous materials by spark plasma sintering: peculiarities of alloy formation during consolidation of Fe@Pt core-shell and hollow Pt(Fe) particles. J Alloys Compd 707:233–237CrossRef Bokhonov BB, Dudina DV (2017) Preparation of porous materials by spark plasma sintering: peculiarities of alloy formation during consolidation of Fe@Pt core-shell and hollow Pt(Fe) particles. J Alloys Compd 707:233–237CrossRef
165.
go back to reference Buscaglia MT, Vivani M, Zhao Z, Buscaglia V, Nanni P (2006) Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chem Mater 18(17):4002–4010CrossRef Buscaglia MT, Vivani M, Zhao Z, Buscaglia V, Nanni P (2006) Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure. Chem Mater 18(17):4002–4010CrossRef
Metadata
Title
Field Effects on Reacting Systems
Authors
Eugene A. Olevsky
Dina V. Dudina
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-76032-2_10

Premium Partners