Skip to main content
Top

2014 | OriginalPaper | Chapter

9. Filtration

Author : Fernando Concha A.

Published in: Solid-Liquid Separation in the Mining Industry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Filtration is the process whereby a solid separates from a fluid by making the suspension pass through a porous bed, known as a filter medium. The bed retains the particles while the fluid passes through the filter medium and becomes a filtrate. To establish a flow of filtrate, it is necessary to apply a pressure difference, called a pressure drop, across the filter medium. There are several ways to do this depending on the driving force, for example: (1) gravity, (2) vacuum, (3) applied pressure, (4) vacuum and pressure combined, (5) centrifugal force, and (6) a saturation gradient. Usually the different driving forces require different filtration equipment called filters. Two main dewatering stages are studied, cake formation and dehumidification, which are studied as mono-phase flow and two-phase flow of a fluid through rigid porous medium, respectively. Field variables and constitutive equations are deduced from the chapter on flow in porous media. Methods of filtration, cake porosity, permeability, capillary curves and relative permeabilities are presented. Finally models of continuous filters are developed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Concha, F. (1990). Suspension Rheology. Universidad de Concepción, (in Spanish). Concha, F. (1990). Suspension Rheology. Universidad de Concepción, (in Spanish).
go back to reference Droguett, M. H. (2000). Optimization of the filtration system of the Coloso Plant, Minera Escondida. Engineering Thesis. University of Concepción, (in Spanish). Droguett, M. H. (2000). Optimization of the filtration system of the Coloso Plant, Minera Escondida. Engineering Thesis. University of Concepción, (in Spanish).
go back to reference Henriksson, B. (2000). Focus on separation in the mining industry. Filtration + Separation, 37(7), 26–29. Henriksson, B. (2000). Focus on separation in the mining industry. Filtration + Separation, 37(7), 26–29.
go back to reference Holdich, R. (1996). Simulation of compressible cake filtration. Filtration + Separation, 31, 825–829. Holdich, R. (1996). Simulation of compressible cake filtration. Filtration + Separation, 31, 825–829.
go back to reference Massarani, G. (1978). Problems in Particulates Systems. COPPE/UFRJ, 21. (in Portuguese). Massarani, G. (1978). Problems in Particulates Systems. COPPE/UFRJ, 21. (in Portuguese).
go back to reference Massarani, G. (1997). Fluodynamics of Particulate Systems. UFRJ (in Portuguese). Massarani, G. (1997). Fluodynamics of Particulate Systems. UFRJ (in Portuguese).
go back to reference Tiller, F. M. (1953). The role of porosity in filtration. Numerical method for constant rate and constant pressure filtration based on Kozeny′s law. Chemical Engineering Progress, 49(9), 467–479. Tiller, F. M. (1953). The role of porosity in filtration. Numerical method for constant rate and constant pressure filtration based on Kozeny′s law. Chemical Engineering Progress, 49(9), 467–479.
go back to reference Tiller, F. M. (1958). The role of porosity in filtration, part III, variable-pressure-variable rate filtration. AIChE Journal, 6(4), 170–174.CrossRef Tiller, F. M. (1958). The role of porosity in filtration, part III, variable-pressure-variable rate filtration. AIChE Journal, 6(4), 170–174.CrossRef
go back to reference Tiller, F. M., & Cooper, H. R. (1958). The role of porosity in filtration. Part IV. Constant pressure filtration. AIChE Journal, 6(4), 595–601.CrossRef Tiller, F. M., & Cooper, H. R. (1958). The role of porosity in filtration. Part IV. Constant pressure filtration. AIChE Journal, 6(4), 595–601.CrossRef
go back to reference Tiller, F. M., & Cooper, H. R. (1962). The role of porosity in filtration. Part V. Porosity variations in filter cakes. AIChE Journal, 8(4), 445–449.CrossRef Tiller, F. M., & Cooper, H. R. (1962). The role of porosity in filtration. Part V. Porosity variations in filter cakes. AIChE Journal, 8(4), 445–449.CrossRef
go back to reference Tiller, F. M., & Shirato, M. (1964). The role of porosity in filtration. Part VI. New definition of filter resistance. AIChE Journal, 10(1), 61–67.CrossRef Tiller, F. M., & Shirato, M. (1964). The role of porosity in filtration. Part VI. New definition of filter resistance. AIChE Journal, 10(1), 61–67.CrossRef
go back to reference Tiller, F. M., & Lu, W. (1972). The role of porosity in filtration. Part VIII, cake non-uniformity in compression-permeability cells. AIChE Journal, 18(3), 569–572.CrossRef Tiller, F. M., & Lu, W. (1972). The role of porosity in filtration. Part VIII, cake non-uniformity in compression-permeability cells. AIChE Journal, 18(3), 569–572.CrossRef
go back to reference Tiller, F. M., & Yeh, C. S. (1987). The role of porosity in filtration. Part XI, filtration followed by expression. AIChE Journal, 33(8), 1241–1256.CrossRef Tiller, F. M., & Yeh, C. S. (1987). The role of porosity in filtration. Part XI, filtration followed by expression. AIChE Journal, 33(8), 1241–1256.CrossRef
go back to reference Tiller, F. M., Hsyung, N. B., & Cong, D. Z. (1985). The role of porosity in filtration. Part XII, filtration with sedimentation. AIChE Journal, 41(5), 1153–1164.CrossRef Tiller, F. M., Hsyung, N. B., & Cong, D. Z. (1985). The role of porosity in filtration. Part XII, filtration with sedimentation. AIChE Journal, 41(5), 1153–1164.CrossRef
go back to reference Wakeman, R. J., & Tarleton, E. S. (1999a). Filtration: Equipment selection, modeling and process simulation (pp. 81–82). Oxford: Elsevier Sci. Wakeman, R. J., & Tarleton, E. S. (1999a). Filtration: Equipment selection, modeling and process simulation (pp. 81–82). Oxford: Elsevier Sci.
go back to reference Wakeman, R. J., & Tarleton, E. S. (1999b). Filtration: Equipment selection, modeling and process simulation. Oxford: Elsevier Sci. 23. Wakeman, R. J., & Tarleton, E. S. (1999b). Filtration: Equipment selection, modeling and process simulation. Oxford: Elsevier Sci. 23.
Metadata
Title
Filtration
Author
Fernando Concha A.
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-02484-4_9

Premium Partners