Skip to main content
Top
Published in: Fluid Dynamics 4/2021

01-07-2021

Fine Structure of the Spreading Pattern of a Freely Falling Droplet in a Fluid at Rest

Authors: A. Yu. Il’inykh, Yu. D. Chashechkin

Published in: Fluid Dynamics | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract—

High-resolving photo and videorecording was used to visualize the fine structure of the flow pattern upon the coalescence of a droplet, \(0.39 < D < 0.43\) cm in diameter, falling at a velocity \(3.1 < U < 3.9\) m/s with water in a reservoir. The spreading of droplets of water, water solution of ink, and copper and iron sulphates is studied. For all pairs of substances, in addition to cavities, crowns, and sheets with shaped outer edges, capillary waves radiated by the annular region of fluid coalescence and thin jetlets at the cavity bottom and the crown walls were observable in the splash formation regime. The jetlets penetrate the sheet and emerge from the tooth tips in the form of spikes. Sequences of small droplets fly out from the spike tips, whose positions change with time. The fluid acceleration is favored by the conversion of the available potential energy upon the annihilation of the free surfaces of the coalescing fluids.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. B. Rogers, “On the formation of rotating rings by air and liquids under certain conditions of discharge,” Amer. J Sci. Arts, Second Ser. 26, 246–258 (1858). W. B. Rogers, “On the formation of rotating rings by air and liquids under certain conditions of discharge,” Amer. J Sci. Arts, Second Ser. 26, 246–258 (1858).
2.
go back to reference J. J. Thomson and H. F. Newall, “On the formation of vortex rings by drops falling into liquids, and some related phenomena,” Proc. Roy. Soc. London. Ser. A 39, 417–436 (1885). J. J. Thomson and H. F. Newall, “On the formation of vortex rings by drops falling into liquids, and some related phenomena,” Proc. Roy. Soc. London. Ser. A 39, 417–436 (1885).
3.
go back to reference Z. Mohamed-Kassim and E. K. Longmire, “Drop coalescence through a liquid/liquid interface,” Phys. Fluids 16, 2170 (2004).ADSCrossRef Z. Mohamed-Kassim and E. K. Longmire, “Drop coalescence through a liquid/liquid interface,” Phys. Fluids 16, 2170 (2004).ADSCrossRef
4.
go back to reference G. Agbaglah, M.-J. Thoraval, S Thoroddsen., V. Zhang, K. Fezzaa, and R. D. Deegan, “Drop impact into a deep pool: Vortex shedding and jet formation,” J. Fluid Mech. 764, R1–R15 (2015).CrossRef G. Agbaglah, M.-J. Thoraval, S Thoroddsen., V. Zhang, K. Fezzaa, and R. D. Deegan, “Drop impact into a deep pool: Vortex shedding and jet formation,” J. Fluid Mech. 764, R1–R15 (2015).CrossRef
5.
go back to reference R. Cimpeanu and M. R. Moore, “Early-time jet formation in liquid–liquid impact problems: theory and simulations,” J. Fluid Mech. 856, 764–796 (2018).ADSMathSciNetCrossRef R. Cimpeanu and M. R. Moore, “Early-time jet formation in liquid–liquid impact problems: theory and simulations,” J. Fluid Mech. 856, 764–796 (2018).ADSMathSciNetCrossRef
6.
go back to reference B. Ray, G. Biswas, and A. Sharma, “Regimes during liquid drop impact on a liquid pool,” J. Fluid Mech. 768, 492–523 (2015).ADSCrossRef B. Ray, G. Biswas, and A. Sharma, “Regimes during liquid drop impact on a liquid pool,” J. Fluid Mech. 768, 492–523 (2015).ADSCrossRef
7.
go back to reference A. M. Worthington, “The splash of the drop. Series “The romance of science”,” Published by Society for Promoting Christian Knowledge (E. & J.B. Young & Co., New York, 1895). A. M. Worthington, “The splash of the drop. Series “The romance of science”,” Published by Society for Promoting Christian Knowledge (E. & J.B. Young & Co., New York, 1895).
8.
go back to reference O. G. Engel, “Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts,” J. Appl. Phys. 38(10), 3935–3940 (1967).ADSCrossRef O. G. Engel, “Initial pressure, initial flow velocity, and the time dependence of crater depth in fluid impacts,” J. Appl. Phys. 38(10), 3935–3940 (1967).ADSCrossRef
9.
10.
go back to reference R. Hurd, T. Fanning, Z. Pan, C. Mahey, K. Bodily, K. Hacking, N. Speirs, and T. Truscott, “Matryoshka cavity,” Phys. Fluids 27, 091104 (2015).ADSCrossRef R. Hurd, T. Fanning, Z. Pan, C. Mahey, K. Bodily, K. Hacking, N. Speirs, and T. Truscott, “Matryoshka cavity,” Phys. Fluids 27, 091104 (2015).ADSCrossRef
11.
go back to reference E. Castillo-Orozco, A. Davanlou, P. Choudhury, and R. Kumar, “Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets,” Phys. Rev. E92 (2015). E. Castillo-Orozco, A. Davanlou, P. Choudhury, and R. Kumar, “Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets,” Phys. Rev. E92 (2015).
12.
go back to reference G. Gupta and P. Kumar, “Splashing dynamics of a drop impact onto a deep liquid pool with moving film interface,” Phys. Fluids 32, 012102 (2020).ADSCrossRef G. Gupta and P. Kumar, “Splashing dynamics of a drop impact onto a deep liquid pool with moving film interface,” Phys. Fluids 32, 012102 (2020).ADSCrossRef
13.
go back to reference J. S. Lee, B. M. Weon, S. J. Park, J. T. Kim, J. Pyo, K. Fezzaa, and J. H. Je, “Air evolution during drop impact on liquid pool,” Sci. Rep. 10, 5790 (2020).ADSCrossRef J. S. Lee, B. M. Weon, S. J. Park, J. T. Kim, J. Pyo, K. Fezzaa, and J. H. Je, “Air evolution during drop impact on liquid pool,” Sci. Rep. 10, 5790 (2020).ADSCrossRef
14.
go back to reference Yu. D. Chashechkin, “Fast superfine components and sound packets in flows induced by a drop impact on a target fluid at rest,” Fluid Dynamics & Material Processing (FDMP) 16(4), 773–800 (2020).CrossRef Yu. D. Chashechkin, “Fast superfine components and sound packets in flows induced by a drop impact on a target fluid at rest,” Fluid Dynamics & Material Processing (FDMP) 16(4), 773–800 (2020).CrossRef
16.
go back to reference A. Yu. Il’inykh and Yu. D. Chashechkin, “Hydrodynamics of submerging drop: lined structures on the crown surface,” Fluid Dynamics 52(2), 309—320 (2017).ADSCrossRef A. Yu. Il’inykh and Yu. D. Chashechkin, “Hydrodynamics of submerging drop: lined structures on the crown surface,” Fluid Dynamics 52(2), 309—320 (2017).ADSCrossRef
17.
go back to reference E. Berberovic, N. P. van Hinsberg, S. Jakirlic, I. V. Roisman, and C. Tropea, “Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution,” Phys. Rev. E79, 036306, 1–15 (2009).MathSciNetCrossRef E. Berberovic, N. P. van Hinsberg, S. Jakirlic, I. V. Roisman, and C. Tropea, “Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution,” Phys. Rev. E79, 036306, 1–15 (2009).MathSciNetCrossRef
18.
go back to reference GFK, the hydrophysical complex for modeling hydrodynamic processes in the environment and their action on underwater engineering objects and the propagation of impurities in the ocean and the atmosphere,” http://www.ipmnet.ru/uniqequip/gfk/#equip. GFK, the hydrophysical complex for modeling hydrodynamic processes in the environment and their action on underwater engineering objects and the propagation of impurities in the ocean and the atmosphere,” http://​www.​ipmnet.​ru/​uniqequip/​gfk/​#equip.
19.
go back to reference D. Eisenberg and W. Kauzman, The Structure and Properties of Water (Oxford Univ. Press, New York, 1969). D. Eisenberg and W. Kauzman, The Structure and Properties of Water (Oxford Univ. Press, New York, 1969).
20.
go back to reference Yu. D. Chashechkin and A. Yu. Il’inykh, “Capillary waves on the Surface of a droplet falling into a liquid,” Doklady Physics 60(12), 548–554 (2015).ADSCrossRef Yu. D. Chashechkin and A. Yu. Il’inykh, “Capillary waves on the Surface of a droplet falling into a liquid,” Doklady Physics 60(12), 548–554 (2015).ADSCrossRef
Metadata
Title
Fine Structure of the Spreading Pattern of a Freely Falling Droplet in a Fluid at Rest
Authors
A. Yu. Il’inykh
Yu. D. Chashechkin
Publication date
01-07-2021
Publisher
Pleiades Publishing
Published in
Fluid Dynamics / Issue 4/2021
Print ISSN: 0015-4628
Electronic ISSN: 1573-8507
DOI
https://doi.org/10.1134/S001546282104008X

Other articles of this Issue 4/2021

Fluid Dynamics 4/2021 Go to the issue

Premium Partners