Skip to main content
Top
Published in: Strength of Materials 4/2021

13-11-2021

Finishing of Rough Sidewalls of a Silicon-on-Insulator Nano-Optical Waveguide Using Laser Surface Melting

Authors: Z. L. Peng, C. G. Zhou

Published in: Strength of Materials | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The 2D numerical model for finishing rough sidewalls of a silicon-on-insulator nano-optical waveguide using laser surface melting is built based on the heat transfer theory. The effect of two important parameters, incident angle and mean energy density of the laser beam, on the temperature field and shape of the weld pool is discussed. The process parameters are optimized. Based on the literature data and the requirements to the weld pool shape in the finishing of rough waveguide sidewalls, its shape is proposed to be optimized after determining the incident angle of the laser beam. Then, an appropriate mean energy density is selected to obtain a sufficient melt depth. In melting, the incident angle should be equal to or exceed 60°, and a larger incident angle is preferred for smoothing the rough sidewalls. For the application of waveguides in optical integrated circuits, the incident angle of the laser beam is proposed to be first determined, and then an appropriate mean energy density to be chosen for finishing their rough sidewalls.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. Malka, M. Cohen, J. Turkiewicz, et al., “Optical micro-multi-racetrack resonator filter based on SOI waveguides,” Photonic. Nanostruct., 16, 16–23 (2015).CrossRef D. Malka, M. Cohen, J. Turkiewicz, et al., “Optical micro-multi-racetrack resonator filter based on SOI waveguides,” Photonic. Nanostruct., 16, 16–23 (2015).CrossRef
2.
go back to reference Z. Q. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-_W power consumption,” in: Proc. of the 2016 IEEE Photonics Conference (IPC), IEEE (2016), https://doi.org/https://doi.org/10.1109/IPCon.2016.7831002. Z. Q. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-_W power consumption,” in: Proc. of the 2016 IEEE Photonics Conference (IPC), IEEE (2016), https://​doi.​org/​https://​doi.​org/​10.​1109/​IPCon.​2016.​7831002.
3.
go back to reference C. Pan and B. M. A. Rahman. “High-sensitivity polarization-independent biochemical sensor based on silicon-on-insulator cross-slot waveguide,” IEEE J. Sel. Top. Quant., 23, No. 2, 1–8 (2017).CrossRef C. Pan and B. M. A. Rahman. “High-sensitivity polarization-independent biochemical sensor based on silicon-on-insulator cross-slot waveguide,” IEEE J. Sel. Top. Quant., 23, No. 2, 1–8 (2017).CrossRef
4.
go back to reference T. Lu, L. Yang, R. V. A. van Loon, et al., “On-chip green silica upconversion microlaser,” Opt. Lett., 34, No. 4, 482–484 (2009).CrossRef T. Lu, L. Yang, R. V. A. van Loon, et al., “On-chip green silica upconversion microlaser,” Opt. Lett., 34, No. 4, 482–484 (2009).CrossRef
5.
go back to reference M. Bendayan, R. Sabo, R. Zolberg, et al., “Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks,” Proc. SPIE, 10112 (2017), https://doi.org/https://doi.org/10.1117/12.2252681. M. Bendayan, R. Sabo, R. Zolberg, et al., “Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks,” Proc. SPIE, 10112 (2017), https://​doi.​org/​https://​doi.​org/​10.​1117/​12.​2252681.
6.
go back to reference F. Gao, Y. Wang, G. Cao, et al., “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B-Lasers O., 81, No. 5, 691–694 (2005).CrossRef F. Gao, Y. Wang, G. Cao, et al., “Improvement of sidewall surface roughness in silicon-on-insulator rib waveguides,” Appl. Phys. B-Lasers O., 81, No. 5, 691–694 (2005).CrossRef
7.
go back to reference Q. Xia, P. F. Murphy, H. Gao, et al., “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology, 20, No. 34, 345302 (2009).CrossRef Q. Xia, P. F. Murphy, H. Gao, et al., “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology, 20, No. 34, 345302 (2009).CrossRef
8.
go back to reference J. C. Conde, P. Gonzalez, F. Lusquinos, et al., “Analytical and numerical calculations of the temperature distribution in Si and Ge targets irradiated by excimer lasers,” Appl. Surf. Sci., 248, No. 1, 455–460 (2005).CrossRef J. C. Conde, P. Gonzalez, F. Lusquinos, et al., “Analytical and numerical calculations of the temperature distribution in Si and Ge targets irradiated by excimer lasers,” Appl. Surf. Sci., 248, No. 1, 455–460 (2005).CrossRef
9.
go back to reference M. Kalyon and B. S. Yilbas, “Repetitive laser pulse heating analysis: pulse parameter variation effects on closed form solution,” Appl. Surf. Sci., 252, No. 6, 2242–2250 (2006).CrossRef M. Kalyon and B. S. Yilbas, “Repetitive laser pulse heating analysis: pulse parameter variation effects on closed form solution,” Appl. Surf. Sci., 252, No. 6, 2242–2250 (2006).CrossRef
10.
go back to reference J. Greuters and N. H. Rizvi, “UV laser micromachining of silicon, indium phosphide and lithium niobate for telecommunications applications,” Proc. SPIE, 4876, No. 1, 479–486 (2003), https://doi.org/https://doi.org/10.1117/12.463653. J. Greuters and N. H. Rizvi, “UV laser micromachining of silicon, indium phosphide and lithium niobate for telecommunications applications,” Proc. SPIE, 4876, No. 1, 479–486 (2003), https://​doi.​org/​https://​doi.​org/​10.​1117/​12.​463653.
11.
go back to reference M. Yin, B. Huang, S. Gao, et al., “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express, 7, No. 5, 2067–2077 (2016).CrossRef M. Yin, B. Huang, S. Gao, et al., “Optical fiber LPG biosensor integrated microfluidic chip for ultrasensitive glucose detection,” Biomed. Opt. Express, 7, No. 5, 2067–2077 (2016).CrossRef
12.
go back to reference S. Johari, M. N. A. Omar, and M. N. M. Nor, “Microfluidic structure fabrication using soft lithography and laser micromachine,” in: Proc. of the 2016 3rd Int. Conf. on Electronic Design (ICED), IEEE (2006), https://doi.org/https://doi.org/10.1109/ICED.2016.7804670. S. Johari, M. N. A. Omar, and M. N. M. Nor, “Microfluidic structure fabrication using soft lithography and laser micromachine,” in: Proc. of the 2016 3rd Int. Conf. on Electronic Design (ICED), IEEE (2006), https://​doi.​org/​https://​doi.​org/​10.​1109/​ICED.​2016.​7804670.
14.
go back to reference D. H. Lee, S. J. Choo, U. Jung, et al., “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng., 25, No. 1, 015003 (2014). D. H. Lee, S. J. Choo, U. Jung, et al., “Low-loss silicon waveguides with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching,” J. Micromech. Microeng., 25, No. 1, 015003 (2014).
15.
go back to reference K. K. Lee, D. R. Lim, L. C. Kimerling, et al., “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett., 26, No. 23, 1888–1890 (2001).CrossRef K. K. Lee, D. R. Lim, L. C. Kimerling, et al., “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett., 26, No. 23, 1888–1890 (2001).CrossRef
16.
go back to reference Q. Q. Duan, X. Y. Ren, A. Q. Jian, et al., “Micro-mechanism of silicon-based waveguide surface smoothing in hydrogen annealing,” Chinese Phys. Lett., 33, No. 12, 126801 (2016). Q. Q. Duan, X. Y. Ren, A. Q. Jian, et al., “Micro-mechanism of silicon-based waveguide surface smoothing in hydrogen annealing,” Chinese Phys. Lett., 33, No. 12, 126801 (2016).
17.
go back to reference M. E. Mitwally, T. Tsuchiya, O. Tabata, et al., “Surface roughness modification of free standing single crystal silicon microstructures using KrF excimer laser treatment for mechanical performance improvement,” J. Surf. Eng. Mater. Adv. Tech., 5, No. 1, 28 (2014). M. E. Mitwally, T. Tsuchiya, O. Tabata, et al., “Surface roughness modification of free standing single crystal silicon microstructures using KrF excimer laser treatment for mechanical performance improvement,” J. Surf. Eng. Mater. Adv. Tech., 5, No. 1, 28 (2014).
18.
go back to reference E. Z. Liang, S. C. Hung, Y. P. Hsieh, et al., “Effective energy densities in KrF excimer laser reformation as a sidewall smoothing technique,” J. Vac. Sci. Technol. B, 26, No. 1, 110–116 (2008).CrossRef E. Z. Liang, S. C. Hung, Y. P. Hsieh, et al., “Effective energy densities in KrF excimer laser reformation as a sidewall smoothing technique,” J. Vac. Sci. Technol. B, 26, No. 1, 110–116 (2008).CrossRef
19.
go back to reference S. C. Hung, E. Z. Liang, and C. F. Lin, “Silicon waveguide sidewall smoothing by KrF excimer laser reformation,” J. Lightwave Technol., 27, No. 7, 887–892 (2009).CrossRef S. C. Hung, E. Z. Liang, and C. F. Lin, “Silicon waveguide sidewall smoothing by KrF excimer laser reformation,” J. Lightwave Technol., 27, No. 7, 887–892 (2009).CrossRef
20.
go back to reference M. E. Mitwally, T. Tsuchiya, O. Tabata, et al., “Improvement of tensile strength of freestanding single crystal silicon microstructures using localized harsh laser treatment,” Jpn. J. Appl. Phys., 53, No. 6S, 06JM03 (2014). M. E. Mitwally, T. Tsuchiya, O. Tabata, et al., “Improvement of tensile strength of freestanding single crystal silicon microstructures using localized harsh laser treatment,” Jpn. J. Appl. Phys., 53, No. 6S, 06JM03 (2014).
21.
go back to reference Z. Li, H. Zhang, Z. Shen, et al., “Time-resolved temperature measurement and numerical simulation of millisecond laser irradiated silicon,” J. Appl. Phys., 114, No. 3, 033104 (2013). Z. Li, H. Zhang, Z. Shen, et al., “Time-resolved temperature measurement and numerical simulation of millisecond laser irradiated silicon,” J. Appl. Phys., 114, No. 3, 033104 (2013).
Metadata
Title
Finishing of Rough Sidewalls of a Silicon-on-Insulator Nano-Optical Waveguide Using Laser Surface Melting
Authors
Z. L. Peng
C. G. Zhou
Publication date
13-11-2021
Publisher
Springer US
Published in
Strength of Materials / Issue 4/2021
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-021-00328-5

Other articles of this Issue 4/2021

Strength of Materials 4/2021 Go to the issue

Premium Partners