Skip to main content
Top

2021 | OriginalPaper | Chapter

Finite Element Modeling and Simulation of Rubber Based Products: Application to Solid Resilient Tire

Authors : N. M. L. W. Arachchi, C. D. Abegunasekara, W. A. A. S. Premarathna, J. A. S. C. Jayasinghe, C. S. Bandara, R. R. M. S. K. Ranathunga

Published in: ICSECM 2019

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper explores the procedure of selecting the best-fitted hyper-elastic material model to describe the mechanical behavior of filled vulcanized rubber-based products, by using nonlinear 3D numerical simulation. Constitutive relationships of these hyper-elastic material models are represented by the strain-energy density functions with the form of polynomial equations. These models utilize to capture the non-linear elasticity and incompressible behavior of elastomers, such as rubber-like materials. In this study, the curve fitting approach and three statistical indexes (MAPE, MAD, and MSD) are proposed to find the best fit hyper-elastic material model and coefficients for a given set of test data of a filled vulcanized rubber sample. Moreover, it highlights the contradictories of each material model by considering the available test data. A three-layered solid resilient tire is used as the numerical example for this study. In this numerical study, the minimum values of the three statistical indexes and coefficients which are obtained from the best-fitted material model with the given experimental data are conformed. The results show that the Yeoh model has a good agreement with the stress-strain curve, which obtained from the experimental data. Further, a static analysis is conducted on the target industrial solid tire, by introducing the selected material model and reasonable displacement and stress results are obtained.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arruda E, Boyce M (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523CrossRef Arruda E, Boyce M (2000) Constitutive models of rubber elasticity: a review. Rubber Chem Technol 73(3):504–523CrossRef
2.
go back to reference Crocker LE, Duncan BC, Urquhart JM, Hughes RG, Olusanya A (2011) The application of rubber material models to analyze flexible adhesive joints, National Physical Laboratory, Teddington, UK, TW11 OLW Now with Loctite, Dublin Crocker LE, Duncan BC, Urquhart JM, Hughes RG, Olusanya A (2011) The application of rubber material models to analyze flexible adhesive joints, National Physical Laboratory, Teddington, UK, TW11 OLW Now with Loctite, Dublin
3.
go back to reference Diani J, Brieu M, Gilormini P (2006) Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int J Solids Struct 43(10):3044–3056CrossRef Diani J, Brieu M, Gilormini P (2006) Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int J Solids Struct 43(10):3044–3056CrossRef
4.
go back to reference Gornet L et al (2012) A new isotropic hyperelastic strain energy function in terms of invariants and its derivation into a pseudo-elastic model for Mullins effect: application to finite element analysis. In: Constitutive models for rubber VII—Proceedings of the 7th European conference on constitutive models for rubber, ECCMR, pp 265–271 Gornet L et al (2012) A new isotropic hyperelastic strain energy function in terms of invariants and its derivation into a pseudo-elastic model for Mullins effect: application to finite element analysis. In: Constitutive models for rubber VII—Proceedings of the 7th European conference on constitutive models for rubber, ECCMR, pp 265–271
5.
go back to reference Harwood S (1999) Thermo mechanical analysis of non-pneumatic rubber tyres, 1st edn. Curtin University of Technology, Perth Harwood S (1999) Thermo mechanical analysis of non-pneumatic rubber tyres, 1st edn. Curtin University of Technology, Perth
6.
go back to reference Hossain M, Denzer R, Possart G, Steinmann P (2007) On phenomenological and micro-mechanical models in finite elasticity and viscoelasticity for rubber-like materials. PAMM 7(1):4060051–4060052CrossRef Hossain M, Denzer R, Possart G, Steinmann P (2007) On phenomenological and micro-mechanical models in finite elasticity and viscoelasticity for rubber-like materials. PAMM 7(1):4060051–4060052CrossRef
8.
go back to reference Huri D, Mankovits T (2018) Comparison of the material models in rubber finite element analysis. IOP Conf Ser Mater Sci Eng 393:012018CrossRef Huri D, Mankovits T (2018) Comparison of the material models in rubber finite element analysis. IOP Conf Ser Mater Sci Eng 393:012018CrossRef
10.
go back to reference Kim B, Lee S, Lee J, Cho S, Park H, Yeom S, Park S (2012) A comparison among the Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int J Precis Eng Manuf 13(5):759–764CrossRef Kim B, Lee S, Lee J, Cho S, Park H, Yeom S, Park S (2012) A comparison among the Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber. Int J Precis Eng Manuf 13(5):759–764CrossRef
11.
go back to reference Kelly R (1960) Solid-liquid reactions: Part I. The determination of solid-liquid reaction mechanism. Canad J Chem 38(7):1209–1217 Kelly R (1960) Solid-liquid reactions: Part I. The determination of solid-liquid reaction mechanism. Canad J Chem 38(7):1209–1217
12.
go back to reference Lu B (2008) Emergent physics at the vulcanization transition Introduction: the percolation picture, pp 1–13 Lu B (2008) Emergent physics at the vulcanization transition Introduction: the percolation picture, pp 1–13
13.
go back to reference Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubber Chem Technol 79(5):835–858CrossRef Marckmann G, Verron E (2006) Comparison of hyperelastic models for rubber-like materials. Rubber Chem Technol 79(5):835–858CrossRef
14.
go back to reference Marvalova B (2008) Viscoelastic properties of filled rubber. Experimental observations and material modeling. In: Proceedings of the 5th European conference on constitutive models for rubber, ECCMR 2007, vol 14, no 1, pp 79–84 Marvalova B (2008) Viscoelastic properties of filled rubber. Experimental observations and material modeling. In: Proceedings of the 5th European conference on constitutive models for rubber, ECCMR 2007, vol 14, no 1, pp 79–84
15.
go back to reference Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592CrossRef Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592CrossRef
16.
go back to reference Nicholson D, Nelson N, Lin B, Farinella A (1998) Finite element analysis of hyperelastic components. Appl Mech Rev 51(5):303–320CrossRef Nicholson D, Nelson N, Lin B, Farinella A (1998) Finite element analysis of hyperelastic components. Appl Mech Rev 51(5):303–320CrossRef
17.
go back to reference Ogden R (1973) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem Technol 46(2):398–416CrossRef Ogden R (1973) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Rubber Chem Technol 46(2):398–416CrossRef
18.
go back to reference Olley P (2006) A Cauchy-stress based solution for a necking elastic constitutive model under large deformation. Int J Numer Meth Eng 65(7):1068–1087CrossRef Olley P (2006) A Cauchy-stress based solution for a necking elastic constitutive model under large deformation. Int J Numer Meth Eng 65(7):1068–1087CrossRef
20.
go back to reference Rackl M (2015) Material testing and hyperelastic material model curve fitting for Ogden, polynomial and Yeoh models. In: ScilabTEC (7th International Scilab Users Conference), May, pp 1–18 Rackl M (2015) Material testing and hyperelastic material model curve fitting for Ogden, polynomial and Yeoh models. In: ScilabTEC (7th International Scilab Users Conference), May, pp 1–18
21.
go back to reference Rivlin R, Saunders D (1951) Large elastic deformations of Isotropic materials. VII. Experiments on the deformation of rubber. Philos Trans R Soc A: Math Phys Eng Sci 243(865):251–288 Rivlin R, Saunders D (1951) Large elastic deformations of Isotropic materials. VII. Experiments on the deformation of rubber. Philos Trans R Soc A: Math Phys Eng Sci 243(865):251–288
23.
go back to reference Vijayaram TR (2009) A technical review on rubber. Int J Des Manuf Technol 3(1):25–37CrossRef Vijayaram TR (2009) A technical review on rubber. Int J Des Manuf Technol 3(1):25–37CrossRef
25.
go back to reference Yeoh O (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63(5):792–805CrossRef Yeoh O (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63(5):792–805CrossRef
26.
go back to reference Yeoh OH (1997) Hyperelastic material models for finite element analysis of rubber. J Nat Rubber Res 12(3):142–153 Yeoh OH (1997) Hyperelastic material models for finite element analysis of rubber. J Nat Rubber Res 12(3):142–153
Metadata
Title
Finite Element Modeling and Simulation of Rubber Based Products: Application to Solid Resilient Tire
Authors
N. M. L. W. Arachchi
C. D. Abegunasekara
W. A. A. S. Premarathna
J. A. S. C. Jayasinghe
C. S. Bandara
R. R. M. S. K. Ranathunga
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7222-7_42