Skip to main content
Top
Published in: Acoustical Physics 6/2023

01-12-2023 | OCEAN ACOUSTICS. HYDROACOUSTICS

Finite Element Modeling of Hydrodynamic Noise Arising in a Flow Around Elastic Bodies

Authors: A. S. Suvorov, E. M. Sokov, A. L. Virovlyansky, V. O. Eremeev, N. V. Balakireva

Published in: Acoustical Physics | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A finite element method is presented for calculating hydrodynamic noise excited by turbulent fluid fluctuations in the presence of an elastic body. The conventional approach to solving this problem by direct solution of the Lighthill equation requires a large amount of calculations. It is demonstrated that the situation is considerably simplified when noise components are calculated at relatively low frequencies, which correspond to wavelengths that exceed the dimensions of the turbulent zone. In this case, the noise field can be expressed in terms of turbulent fluctuations in pressure on the surface of an elastic body, which is found in the incompressible fluid approximation. The article is based on a report presented at the IX Russian Conference “Computational Experiment in Aeroacoustics and Aerodynamics,” Svetlogorsk, September 26–October 1, 2022.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference M. Yu. Zaytsev, V. F. Kopiev, S. A. Velichko, and I. V. Belyaev, Acoust. Phys. 69 (2), 182 (2023).ADSCrossRef M. Yu. Zaytsev, V. F. Kopiev, S. A. Velichko, and I. V. Belyaev, Acoust. Phys. 69 (2), 182 (2023).ADSCrossRef
3.
5.
go back to reference S. Glegg and W. Devenport, Aeroacoustics of Low Mach Number Flows (Acad. Press, 2017). S. Glegg and W. Devenport, Aeroacoustics of Low Mach Number Flows (Acad. Press, 2017).
6.
go back to reference A. Yu. Snegirev, High-Performance Computations for Technical Physics. Numerical Simulation of Turbulent Flows (St. Petersburg, 2009) [in Russian]. A. Yu. Snegirev, High-Performance Computations for Technical Physics. Numerical Simulation of Turbulent Flows (St. Petersburg, 2009) [in Russian].
7.
go back to reference T. Kajishima and K. Taira, Computational Fluid Dynamics: Incompressible Turbulent Flows (Springer, Cham, 2017).CrossRef T. Kajishima and K. Taira, Computational Fluid Dynamics: Incompressible Turbulent Flows (Springer, Cham, 2017).CrossRef
8.
go back to reference P. Sagaut, S. Deck, and M. Terracol, Multiscale and Multiresolution Approaches in Turbulence. LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines (Imperial College Press, London, 2013).CrossRef P. Sagaut, S. Deck, and M. Terracol, Multiscale and Multiresolution Approaches in Turbulence. LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines (Imperial College Press, London, 2013).CrossRef
10.
go back to reference J. E. W. Ffowcs and D. L. Hawkings, Proc. R. Soc. London A 264, 564 (1969). J. E. W. Ffowcs and D. L. Hawkings, Proc. R. Soc. London A 264, 564 (1969).
11.
go back to reference M. S. Howe, Theory of Vortex Sound (Cambridge Univ. Press, New York, 2003). M. S. Howe, Theory of Vortex Sound (Cambridge Univ. Press, New York, 2003).
13.
go back to reference V. A. Titarev, G. A. Faranosov, S. A. Chernyshev, and A. S. Batrakov, Acoust. Phys. 64 (6), 760 (2018).ADSCrossRef V. A. Titarev, G. A. Faranosov, S. A. Chernyshev, and A. S. Batrakov, Acoust. Phys. 64 (6), 760 (2018).ADSCrossRef
15.
go back to reference A. A. Oberai, F. Roknaldin, and T. J. R. Hughes, Comput. Methods Appl. Mech. Eng. 190 (3), 345 (2000).ADSCrossRef A. A. Oberai, F. Roknaldin, and T. J. R. Hughes, Comput. Methods Appl. Mech. Eng. 190 (3), 345 (2000).ADSCrossRef
16.
17.
go back to reference L. D. Landau and E. M. Lifshits, Elasticity Theory (Nauka, Moscow, 1987) [in Russian]. L. D. Landau and E. M. Lifshits, Elasticity Theory (Nauka, Moscow, 1987) [in Russian].
18.
go back to reference A. A. Oberai and M. Wang, in Proc. of the Summer Program (Center for Turbulence Research, 2000). A. A. Oberai and M. Wang, in Proc. of the Summer Program (Center for Turbulence Research, 2000).
19.
20.
go back to reference L. D. Landau and E. M. Lifshits, Hydrodynamics (Nauka, Moscow, 1976) [in Russian]. L. D. Landau and E. M. Lifshits, Hydrodynamics (Nauka, Moscow, 1976) [in Russian].
21.
go back to reference G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1961; Nauka, Moscow, 1974). G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1961; Nauka, Moscow, 1974).
22.
go back to reference J. H. Lienhard, Washington State Univ. Coll. Eng. Res. Div. Bull. 300, 1 (1966). J. H. Lienhard, Washington State Univ. Coll. Eng. Res. Div. Bull. 300, 1 (1966).
23.
go back to reference S. I. Devnin, Aerohydromechanics of High-Drag Structures. Handbook (Sudostroenie, Leningrad, 1983) [in Russian]. S. I. Devnin, Aerohydromechanics of High-Drag Structures. Handbook (Sudostroenie, Leningrad, 1983) [in Russian].
25.
go back to reference X. Tian, M. C. Ong, J. Yang, and D. Myrhaug, Ocean Eng. 58 (58), 208 (2013).CrossRef X. Tian, M. C. Ong, J. Yang, and D. Myrhaug, Ocean Eng. 58 (58), 208 (2013).CrossRef
26.
go back to reference S. Wang, W. Cheng, R. Du, and Y. Wang, Math. Probl. Eng. 2020 (3), 1 (2020). S. Wang, W. Cheng, R. Du, and Y. Wang, Math. Probl. Eng. 2020 (3), 1 (2020).
27.
go back to reference F. R. Menter and R. Sechner, Best Practice: RANS Turbulence Modeling in Ansys CFD (Ansys Germany Gmb-H, NTS, St. Petersburg). F. R. Menter and R. Sechner, Best Practice: RANS Turbulence Modeling in Ansys CFD (Ansys Germany Gmb-H, NTS, St. Petersburg).
28.
go back to reference M. Roger and S. Moreau, J. Sound Vib. 286, 477 (2005). M. Roger and S. Moreau, J. Sound Vib. 286, 477 (2005).
29.
go back to reference M. Roger and S. Moreau, J. Sound Vib. 323, 397 (2009). M. Roger and S. Moreau, J. Sound Vib. 323, 397 (2009).
Metadata
Title
Finite Element Modeling of Hydrodynamic Noise Arising in a Flow Around Elastic Bodies
Authors
A. S. Suvorov
E. M. Sokov
A. L. Virovlyansky
V. O. Eremeev
N. V. Balakireva
Publication date
01-12-2023
Publisher
Pleiades Publishing
Published in
Acoustical Physics / Issue 6/2023
Print ISSN: 1063-7710
Electronic ISSN: 1562-6865
DOI
https://doi.org/10.1134/S1063771023601206

Other articles of this Issue 6/2023

Acoustical Physics 6/2023 Go to the issue

Premium Partners