Skip to main content
Top

2013 | OriginalPaper | Chapter

9. Finite Frames for Sparse Signal Processing

Authors : Waheed U. Bajwa, Ali Pezeshki

Published in: Finite Frames

Publisher: Birkhäuser Boston

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the last decade, considerable progress has been made toward developing new signal processing methods to manage the deluge of data caused by advances in sensing, imaging, storage, and computing technologies. Most of these methods are based on a simple but fundamental observation: high-dimensional data sets are typically highly redundant and live on low-dimensional manifolds or subspaces. This means that the collected data can often be represented in a sparse or parsimonious way in a suitably selected finite frame. This observation has also led to the development of a new sensing paradigm, called compressed sensing, which shows that high-dimensional data sets can often be reconstructed, with high fidelity, from only a small number of measurements. Finite frames play a central role in the design and analysis of both sparse representations and compressed sensing methods. In this chapter, we highlight this role primarily in the context of compressed sensing for estimation, recovery, support detection, regression, and detection of sparse signals. The recurring theme is that frames with small spectral norm and/or small worst-case coherence, average coherence, or sum coherence are well suited for making measurements of sparse signals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The sparse signal processing literature often uses the terms sensing matrix, measurement matrix, and dictionary for the frame Φ in this setting.
 
2
Theorem 9.1 has been stated in [28] using the terminology of spark, instead of the URP. The spark of a frame Φ is defined in [28] as the smallest number of frame elements of Φ that are linearly dependent. In other words, Φ satisfies the URP of order K if and only if spark(Φ)≥K+1.
 
3
Recall, with big-O notation, that f(n)=O(g(n)) if there exist positive C and n 0 such that for all n>n 0, f(n)≤Cg(n). Also, f(n)=Ω(g(n)) if g(n)=O(f(n)), and f(n)=Θ(g(n)) if f(n)=O(g(n)) and g(n)=O(f(n)).
 
4
We point out here that if one is willing to tolerate some bias in the estimate, then the estimation error can be made smaller than \(O(\sqrt{\sigma^{2}K})\); see, e.g., [18, 31].
 
5
Recently Bourgain et al. in [10] have reported a deterministic construction of frames that satisfies the RIP of K=O(N 1/2+δ ). However, the constant δ in there is so small that the scaling can be considered K=O(N 1/2) for all practical purposes.
 
6
Recall the definition of the phase of a number r∈ℂ: \(\operatorname{sgn}(r) = \frac{r}{|r|}\).
 
Literature
1.
go back to reference IEEE Signal Processing Magazine, special issue on compressive sampling (2008) IEEE Signal Processing Magazine, special issue on compressive sampling (2008)
2.
go back to reference Bajwa, W.U., Calderbank, R., Jafarpour, S.: Model selection: two fundamental measures of coherence and their algorithmic significance. In: Proc. IEEE Intl. Symp. Information Theory (ISIT’10), Austin, TX, pp. 1568–1572 (2010) CrossRef Bajwa, W.U., Calderbank, R., Jafarpour, S.: Model selection: two fundamental measures of coherence and their algorithmic significance. In: Proc. IEEE Intl. Symp. Information Theory (ISIT’10), Austin, TX, pp. 1568–1572 (2010) CrossRef
3.
go back to reference Bajwa, W.U., Calderbank, R., Jafarpour, S.: Why Gabor frames? Two fundamental measures of coherence and their role in model selection. J. Commun. Netw. 12(4), 289–307 (2010) Bajwa, W.U., Calderbank, R., Jafarpour, S.: Why Gabor frames? Two fundamental measures of coherence and their role in model selection. J. Commun. Netw. 12(4), 289–307 (2010)
4.
go back to reference Bajwa, W.U., Calderbank, R., Mixon, D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33(1), 58–78 (2012) MathSciNetMATHCrossRef Bajwa, W.U., Calderbank, R., Mixon, D.G.: Two are better than one: fundamental parameters of frame coherence. Appl. Comput. Harmon. Anal. 33(1), 58–78 (2012) MathSciNetMATHCrossRef
5.
go back to reference Bajwa, W.U., Haupt, J., Raz, G., Nowak, R.: Compressed channel sensing. In: Proc. 42nd Annu. Conf. Information Sciences and Systems (CISS’08), Princeton, NJ, pp. 5–10 (2008) CrossRef Bajwa, W.U., Haupt, J., Raz, G., Nowak, R.: Compressed channel sensing. In: Proc. 42nd Annu. Conf. Information Sciences and Systems (CISS’08), Princeton, NJ, pp. 5–10 (2008) CrossRef
6.
go back to reference Ben-Haim, Z., Eldar, Y.C., Elad, M.: Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Trans. Signal Process. 58(10), 5030–5043 (2010) MathSciNetCrossRef Ben-Haim, Z., Eldar, Y.C., Elad, M.: Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Trans. Signal Process. 58(10), 5030–5043 (2010) MathSciNetCrossRef
7.
go back to reference Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009) MathSciNetMATHCrossRef Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009) MathSciNetMATHCrossRef
9.
go back to reference Boufounos, P., Kutynio, G., Rahut, H.: Sparse recovery from combined fusion frame measurements. IEEE Trans. Inf. Theory 57(6), 3864–3876 (2011) CrossRef Boufounos, P., Kutynio, G., Rahut, H.: Sparse recovery from combined fusion frame measurements. IEEE Trans. Inf. Theory 57(6), 3864–3876 (2011) CrossRef
10.
go back to reference Bourgain, J., Dilworth, S.J., Ford, K., Konyagin, S.V., Kutzarova, D.: Breaking the k 2 barrier for explicit RIP matrices. In: Proc. 43rd Annu. ACM Symp. Theory Computing (STOC’11), San Jose, California, pp. 637–644 (2011) Bourgain, J., Dilworth, S.J., Ford, K., Konyagin, S.V., Kutzarova, D.: Breaking the k 2 barrier for explicit RIP matrices. In: Proc. 43rd Annu. ACM Symp. Theory Computing (STOC’11), San Jose, California, pp. 637–644 (2011)
11.
go back to reference Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) MATH Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004) MATH
12.
go back to reference Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009) MathSciNetMATHCrossRef Bruckstein, A.M., Donoho, D.L., Elad, M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009) MathSciNetMATHCrossRef
13.
go back to reference Calderbank, R., Casazza, P., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35, 1–31 (2011) MathSciNetMATHCrossRef Calderbank, R., Casazza, P., Heinecke, A., Kutyniok, G., Pezeshki, A.: Sparse fusion frames: existence and construction. Adv. Comput. Math. 35, 1–31 (2011) MathSciNetMATHCrossRef
14.
go back to reference Candès, E.J.: The restricted isometry property and its implications for compressed sensing. In: C. R. Acad. Sci., Ser. I, Paris, vol. 346, pp. 589–592 (2008) Candès, E.J.: The restricted isometry property and its implications for compressed sensing. In: C. R. Acad. Sci., Ser. I, Paris, vol. 346, pp. 589–592 (2008)
15.
go back to reference Candès, E.J., Plan, Y.: Near-ideal model selection by ℓ 1 minimization. Ann. Stat. 37(5A), 2145–2177 (2009) MATHCrossRef Candès, E.J., Plan, Y.: Near-ideal model selection by 1 minimization. Ann. Stat. 37(5A), 2145–2177 (2009) MATHCrossRef
16.
go back to reference Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006) MathSciNetMATHCrossRef Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006) MathSciNetMATHCrossRef
17.
go back to reference Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006) MathSciNetCrossRef Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52(12), 5406–5425 (2006) MathSciNetCrossRef
18.
go back to reference Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007) MATHCrossRef Candès, E.J., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6), 2313–2351 (2007) MATHCrossRef
19.
go back to reference Casazza, P., Fickus, M., Mixon, D., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011) MathSciNetMATHCrossRef Casazza, P., Fickus, M., Mixon, D., Wang, Y., Zhou, Z.: Constructing tight fusion frames. Appl. Comput. Harmon. Anal. 30, 175–187 (2011) MathSciNetMATHCrossRef
20.
go back to reference Casazza, P., Leon, M.: Existence and construction of finite tight frames. J. Concr. Appl. Math. 4(3), 277–289 (2006) MathSciNetMATH Casazza, P., Leon, M.: Existence and construction of finite tight frames. J. Concr. Appl. Math. 4(3), 277–289 (2006) MathSciNetMATH
21.
go back to reference Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Appl. Comput. Harmon. Anal. 18(2–4), 387–430 (2003) MATH Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Appl. Comput. Harmon. Anal. 18(2–4), 387–430 (2003) MATH
22.
go back to reference Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998) MathSciNetCrossRef Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998) MathSciNetCrossRef
23.
24.
go back to reference Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996) MathSciNetMATHCrossRef Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996) MathSciNetMATHCrossRef
25.
go back to reference Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55(5), 2230–2249 (2009) MathSciNetCrossRef Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inform. Theory 55(5), 2230–2249 (2009) MathSciNetCrossRef
26.
go back to reference Devore, R.A.: Nonlinear approximation. In: Iserles, A. (ed.) Acta Numerica, vol. 7, pp. 51–150. Cambridge University Press, Cambridge (1998) Devore, R.A.: Nonlinear approximation. In: Iserles, A. (ed.) Acta Numerica, vol. 7, pp. 51–150. Cambridge University Press, Cambridge (1998)
28.
go back to reference Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ 1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003) MathSciNetMATHCrossRef Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003) MathSciNetMATHCrossRef
29.
go back to reference Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006) MathSciNetCrossRef Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006) MathSciNetCrossRef
30.
go back to reference Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001) MathSciNetMATHCrossRef Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001) MathSciNetMATHCrossRef
33.
go back to reference Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005) MATH Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Berlin (2005) MATH
34.
go back to reference Eldar, Y., Kutyniok, G.: Compressed Sensing: Theory and Applications, 1st edn. Cambridge University Press, Cambridge (2012) Eldar, Y., Kutyniok, G.: Compressed Sensing: Theory and Applications, 1st edn. Cambridge University Press, Cambridge (2012)
35.
go back to reference Eldar, Y.C., Kuppinger, P., Bölcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010) MathSciNetCrossRef Eldar, Y.C., Kuppinger, P., Bölcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010) MathSciNetCrossRef
37.
go back to reference Fletcher, A.K., Rangan, S., Goyal, V.K.: Necessary and sufficient conditions for sparsity pattern recovery. IEEE Trans. Inform. Theory 55(12), 5758–5772 (2009) MathSciNetCrossRef Fletcher, A.K., Rangan, S., Goyal, V.K.: Necessary and sufficient conditions for sparsity pattern recovery. IEEE Trans. Inform. Theory 55(12), 5758–5772 (2009) MathSciNetCrossRef
38.
39.
go back to reference Genovese, C.R., Jin, J., Wasserman, L., Yao, Z.: A comparison of the lasso and marginal regression. J. Mach. Learn. Res. 13, 2107–2143 (2012) Genovese, C.R., Jin, J., Wasserman, L., Yao, Z.: A comparison of the lasso and marginal regression. J. Mach. Learn. Res. 13, 2107–2143 (2012)
40.
go back to reference Geršgorin, S.A.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 6, 749–754 (1931) Geršgorin, S.A.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR Ser. Fiz.-Mat. 6, 749–754 (1931)
41.
go back to reference Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997) CrossRef Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997) CrossRef
42.
go back to reference Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49(12), 3320–3325 (2003) MathSciNetCrossRef Gribonval, R., Nielsen, M.: Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49(12), 3320–3325 (2003) MathSciNetCrossRef
43.
44.
go back to reference Haupt, J., Bajwa, W.U., Raz, G., Nowak, R.: Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inform. Theory 56(11), 5862–5875 (2010) MathSciNetCrossRef Haupt, J., Bajwa, W.U., Raz, G., Nowak, R.: Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inform. Theory 56(11), 5862–5875 (2010) MathSciNetCrossRef
45.
go back to reference Haupt, J., Nowak, R.: Compressive sampling for signal detection. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. III-1509–III-1512 (2007) Haupt, J., Nowak, R.: Compressive sampling for signal detection. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. III-1509–III-1512 (2007)
47.
go back to reference Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, pp. 772–780 (2009) Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: Advances in Neural Information Processing Systems, pp. 772–780 (2009)
48.
49.
go back to reference Kutyniok, G., Pezeshki, A., Calderbank, R., Liu, T.: Robust dimension reduction, fusion frames, and Grassmannian packings. Appl. Comput. Harmon. Anal. 26(1), 64–76 (2009) MathSciNetMATHCrossRef Kutyniok, G., Pezeshki, A., Calderbank, R., Liu, T.: Robust dimension reduction, fusion frames, and Grassmannian packings. Appl. Comput. Harmon. Anal. 26(1), 64–76 (2009) MathSciNetMATHCrossRef
50.
go back to reference Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, Orlando (1985) MATH Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, Orlando (1985) MATH
51.
go back to reference Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993) MATHCrossRef Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993) MATHCrossRef
53.
go back to reference Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34(3), 1436–1462 (2006) MATHCrossRef Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34(3), 1436–1462 (2006) MATHCrossRef
55.
go back to reference Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009) MathSciNetMATHCrossRef Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009) MathSciNetMATHCrossRef
56.
go back to reference Paredes, J., Wang, Z., Arce, G., Sadler, B.: Compressive matched subspace detection. In: Proc. 17th European Signal Processing Conference, Glasgow, Scotland, pp. 120–124 (2009) Paredes, J., Wang, Z., Arce, G., Sadler, B.: Compressive matched subspace detection. In: Proc. 17th European Signal Processing Conference, Glasgow, Scotland, pp. 120–124 (2009)
57.
go back to reference Reeves, G., Gastpar, M.: A note on optimal support recovery in compressed sensing. In: Proc. 43rd Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA (2009) Reeves, G., Gastpar, M.: A note on optimal support recovery in compressed sensing. In: Proc. 43rd Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA (2009)
59.
go back to reference Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7(4), 1307–1330 (1986) MathSciNetMATHCrossRef Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7(4), 1307–1330 (1986) MathSciNetMATHCrossRef
60.
go back to reference Scharf, L.L.: Statistical Signal Processing. Addison-Wesley, Cambridge (1991) MATH Scharf, L.L.: Statistical Signal Processing. Addison-Wesley, Cambridge (1991) MATH
61.
go back to reference Schnass, K., Vandergheynst, P.: Average performance analysis for thresholding. IEEE Signal Process. Lett. 14(11), 828–831 (2007) CrossRef Schnass, K., Vandergheynst, P.: Average performance analysis for thresholding. IEEE Signal Process. Lett. 14(11), 828–831 (2007) CrossRef
62.
go back to reference Stojnic, M., Parvaresh, F., Hassibi, B.: On the representation of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8), 3075–3085 (2009) MathSciNetCrossRef Stojnic, M., Parvaresh, F., Hassibi, B.: On the representation of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8), 3075–3085 (2009) MathSciNetCrossRef
64.
go back to reference Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003) MathSciNetMATHCrossRef Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003) MathSciNetMATHCrossRef
65.
go back to reference Sustik, M., Tropp, J.A., Dhillon, I.S., Heath, R.W. Jr.: On the existence of equiangular tight frames. Linear Algebra Appl. 426(2–3), 619–635 (2007) MathSciNetMATHCrossRef Sustik, M., Tropp, J.A., Dhillon, I.S., Heath, R.W. Jr.: On the existence of equiangular tight frames. Linear Algebra Appl. 426(2–3), 619–635 (2007) MathSciNetMATHCrossRef
66.
go back to reference Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996) MathSciNetMATH Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996) MathSciNetMATH
67.
go back to reference Tropp, J., Gilbert, A., Muthukrishnan, S., Strauss, M.: Improved sparse approximation over quasiincoherent dictionaries. In: Proc. IEEE Conf. Image Processing (ICIP’03), pp. 37–40 (2003) Tropp, J., Gilbert, A., Muthukrishnan, S., Strauss, M.: Improved sparse approximation over quasiincoherent dictionaries. In: Proc. IEEE Conf. Image Processing (ICIP’03), pp. 37–40 (2003)
68.
go back to reference Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50(10), 2231–2242 (2004) MathSciNetCrossRef Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50(10), 2231–2242 (2004) MathSciNetCrossRef
69.
go back to reference Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52(3), 1030–1051 (2006) MathSciNetCrossRef Tropp, J.A.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52(3), 1030–1051 (2006) MathSciNetCrossRef
70.
go back to reference Tropp, J.A.: Norms of random submatrices and sparse approximation. In: C. R. Acad. Sci., Ser. I, Paris, vol. 346, pp. 1271–1274 (2008) Tropp, J.A.: Norms of random submatrices and sparse approximation. In: C. R. Acad. Sci., Ser. I, Paris, vol. 346, pp. 1271–1274 (2008)
72.
go back to reference Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(5), 948–958 (2010) CrossRef Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(5), 948–958 (2010) CrossRef
73.
go back to reference Wainwright, M.J.: Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ 1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55(5), 2183–2202 (2009) MathSciNetCrossRef Wainwright, M.J.: Sharp thresholds for high-dimensional and noisy sparsity recovery using 1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55(5), 2183–2202 (2009) MathSciNetCrossRef
74.
go back to reference Wang, Z., Arce, G., Sadler, B.: Subspace compressive detection for sparse signals. In: IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 3873–3876 (2008) Wang, Z., Arce, G., Sadler, B.: Subspace compressive detection for sparse signals. In: IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 3873–3876 (2008)
75.
76.
go back to reference Zahedi, R., Pezeshki, A., Chong, E.K.P.: Robust measurement design for detecting sparse signals: equiangular uniform tight frames and Grassmannian packings. In: Proc. 2010 American Control Conference (ACC), Baltimore, MD (2010) Zahedi, R., Pezeshki, A., Chong, E.K.P.: Robust measurement design for detecting sparse signals: equiangular uniform tight frames and Grassmannian packings. In: Proc. 2010 American Control Conference (ACC), Baltimore, MD (2010)
78.
go back to reference Zelnik-Manor, L., Rosenblum, K., Eldar, Y.C.: Sensing matrix optimization for block-sparse decoding. IEEE Trans. Signal Process. 59(9), 4300–4312 (2011) MathSciNetCrossRef Zelnik-Manor, L., Rosenblum, K., Eldar, Y.C.: Sensing matrix optimization for block-sparse decoding. IEEE Trans. Signal Process. 59(9), 4300–4312 (2011) MathSciNetCrossRef
79.
go back to reference Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006) MathSciNetMATH Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006) MathSciNetMATH
Metadata
Title
Finite Frames for Sparse Signal Processing
Authors
Waheed U. Bajwa
Ali Pezeshki
Copyright Year
2013
Publisher
Birkhäuser Boston
DOI
https://doi.org/10.1007/978-0-8176-8373-3_9

Premium Partner