Skip to main content
Top
Published in: Computational Mechanics 5/2019

27-04-2019 | Original Paper

Finite strain visco-elastic growth driven by nutrient diffusion: theory, FEM implementation and an application to the biofilm growth

Author: Meisam Soleimani

Published in: Computational Mechanics | Issue 5/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, a thermodynamically consistent visco-elastic growth model driven by nutrient diffusion is presented in the finite deformation framework. Growth phenomena usually occur in biological tissues. Systems involving growth are known to be open systems with a continuous injection of mass into the system which results in volume expansion. Here the growth is driven by the diffusion of a nutrient. It implies that the diffusion equation for the nutrient concentration needs to be solved in conjunction with the conservation equation of mass and momentum. Hence, the problem falls into the multi-physics class. Additionally, a viscous rheological model is introduced to account for stress relaxation. Although the emergence of residual stresses is inherent to the growth process, the viscous behaviour of the material determines to what extend such stresses remain in the body. The numerical implementation is performed using the symbolic tool Ace-Gen while employing a fully implicit and monolithic scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abi-Akl R, Abeyaratne R, Cohen T (2019) Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proc R Soc A 475:20180465MathSciNetCrossRefMATH Abi-Akl R, Abeyaratne R, Cohen T (2019) Kinetics of surface growth with coupled diffusion and the emergence of a universal growth path. Proc R Soc A 475:20180465MathSciNetCrossRefMATH
2.
go back to reference Albero BA, Ehret AE, Böl M (2014) A new approach to the simulation of microbial biofilms by a theory of fluid-like pressure-restricted finite growth. Comput Methods Appl Mech Eng 272:271–289MathSciNetCrossRefMATH Albero BA, Ehret AE, Böl M (2014) A new approach to the simulation of microbial biofilms by a theory of fluid-like pressure-restricted finite growth. Comput Methods Appl Mech Eng 272:271–289MathSciNetCrossRefMATH
3.
go back to reference Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789CrossRefMATH Alpkvist E, Klapper I (2007) A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull Math Biol 69:765–789CrossRefMATH
4.
go back to reference Bennett KC, Regueiro RA, Borja RI (2016) Finite strain elastoplasticity considering Eshelby stress for materials undergoing plastic volume change. Int J Plast 77:214–245CrossRef Bennett KC, Regueiro RA, Borja RI (2016) Finite strain elastoplasticity considering Eshelby stress for materials undergoing plastic volume change. Int J Plast 77:214–245CrossRef
5.
go back to reference Chester SA, Anand L (2010) A coupled theory of fluid permeation and large deformations for elastomeric materials. J Mech Phys Solids 58:1879–1906MathSciNetCrossRefMATH Chester SA, Anand L (2010) A coupled theory of fluid permeation and large deformations for elastomeric materials. J Mech Phys Solids 58:1879–1906MathSciNetCrossRefMATH
6.
go back to reference Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178MathSciNetCrossRefMATH Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178MathSciNetCrossRefMATH
8.
go back to reference Cyron CJ, Humphrey JD (2017) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664MathSciNetCrossRef Cyron CJ, Humphrey JD (2017) Growth and remodeling of load-bearing biological soft tissues. Meccanica 52(3):645–664MathSciNetCrossRef
9.
go back to reference Dillon R, Fauci L, Fogelson A, Gaver D (1996) Modeling biofilm processes using the immersed boundary method. J Comput Phys 129(1):57–73CrossRefMATH Dillon R, Fauci L, Fogelson A, Gaver D (1996) Modeling biofilm processes using the immersed boundary method. J Comput Phys 129(1):57–73CrossRefMATH
10.
go back to reference Dortdivanlioglu B, Linder C (2019) Diffusion-driven swelling-induced instabilities of hydrogels. J Mechan Phys Solids 125:38–52MathSciNetCrossRef Dortdivanlioglu B, Linder C (2019) Diffusion-driven swelling-induced instabilities of hydrogels. J Mechan Phys Solids 125:38–52MathSciNetCrossRef
11.
go back to reference Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16(7):951–978CrossRefMATH Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16(7):951–978CrossRefMATH
12.
go back to reference Feng D, Neuweiler I, Nackenhorst U (2017) A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model. Comput Mech 59(6):1049–1070MathSciNetCrossRef Feng D, Neuweiler I, Nackenhorst U (2017) A spatially stabilized TDG based finite element framework for modeling biofilm growth with a multi-dimensional multi-species continuum biofilm model. Comput Mech 59(6):1049–1070MathSciNetCrossRef
13.
go back to reference Gebara F (1999) Activated sludge biofilm wastewater treatment system. Water Res 33(1):230–238CrossRef Gebara F (1999) Activated sludge biofilm wastewater treatment system. Water Res 33(1):230–238CrossRef
14.
15.
go back to reference Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodeling: a stability criterion and a time stepping method. Int J Numer Method Eng 36:837–854CrossRef Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodeling: a stability criterion and a time stepping method. Int J Numer Method Eng 36:837–854CrossRef
16.
go back to reference Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modeling of isotropic multiplicative growth. Comput Model Eng Sci 4(2):119–134MATH Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modeling of isotropic multiplicative growth. Comput Model Eng Sci 4(2):119–134MATH
17.
go back to reference Holzapfel GA (1999) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng 39(22):3903–3926CrossRefMATH Holzapfel GA (1999) On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int J Numer Methods Eng 39(22):3903–3926CrossRefMATH
19.
20.
go back to reference Kreft JU, Booth G, Wimpenny JWT (1998) BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275–3287CrossRef Kreft JU, Booth G, Wimpenny JWT (1998) BacSim, a simulator for individual-based modeling of bacterial colony growth. Microbiology 144:3275–3287CrossRef
21.
go back to reference Kreft JU, Picioreanu C, Wimpenny JWT (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912CrossRef Kreft JU, Picioreanu C, Wimpenny JWT (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912CrossRef
22.
go back to reference Lardon LA, Merkey BV, Martins S, Dtsch A, Picioreanu C, Kreft JU, Smets BF (2011) iDynoMiCS: next-generation individual-based modeling of biofilms. Environ Microbiol 13(9):2416–2434CrossRef Lardon LA, Merkey BV, Martins S, Dtsch A, Picioreanu C, Kreft JU, Smets BF (2011) iDynoMiCS: next-generation individual-based modeling of biofilms. Environ Microbiol 13(9):2416–2434CrossRef
23.
go back to reference Lear G, Lewis GD (2012) Microbial biofilms: current research and applications. Caister Academic Press, Norfolk Lear G, Lewis GD (2012) Microbial biofilms: current research and applications. Caister Academic Press, Norfolk
24.
go back to reference Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33CrossRef Nicolella C, van Loosdrecht MCM, Heijnen JJ (2000) Wastewater treatment with particulate biofilm reactors. J Biotechnol 80(1):1–33CrossRef
25.
go back to reference Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling:application for growth in gel beads. Biotechnol Bioeng 57(6):718–731CrossRef Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling:application for growth in gel beads. Biotechnol Bioeng 57(6):718–731CrossRef
26.
go back to reference Picioreanu C, Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modeling of biofilm structure. Water Sci Technol 39:115–122CrossRef Picioreanu C, Loosdrecht MCM, Heijnen JJ (1999) Discrete-differential modeling of biofilm structure. Water Sci Technol 39:115–122CrossRef
27.
go back to reference Picioreanu C, Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515CrossRef Picioreanu C, Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515CrossRef
29.
go back to reference Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26):3455–3482CrossRefMATH Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35(26):3455–3482CrossRefMATH
30.
go back to reference Rittmann BE, McCarty PL (1980) Model of steady-state- kinetics. Biotechnol Bioeng 22:2343–2357CrossRef Rittmann BE, McCarty PL (1980) Model of steady-state- kinetics. Biotechnol Bioeng 22:2343–2357CrossRef
31.
go back to reference Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467CrossRef Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467CrossRef
32.
go back to reference Sidoroff F (1974) un modle viscolastique non linaire avec configuration intermdiaire. J de Mec 13:679–713MathSciNet Sidoroff F (1974) un modle viscolastique non linaire avec configuration intermdiaire. J de Mec 13:679–713MathSciNet
33.
go back to reference Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173CrossRefMATH Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173CrossRefMATH
34.
go back to reference Soleimani M, Wriggers P (2016) Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58(4):619–633MathSciNetCrossRef Soleimani M, Wriggers P (2016) Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method. Comput Mech 58(4):619–633MathSciNetCrossRef
35.
go back to reference Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3):348–354CrossRef Taber LA (1998) A model for aortic growth based on fluid shear and fiber stresses. J Biomech Eng 120(3):348–354CrossRef
36.
go back to reference Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6):528–35CrossRef Taber LA, Humphrey JD (2001) Stress-modulated growth, residual stress, and vascular heterogeneity. J Biomech Eng 123(6):528–35CrossRef
37.
go back to reference Trejo M, Douarche C, Bailleux V, Poulard C, Mariot S, Regeard C, Raspaud E (2013) Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc Natl Acad Sci 110:2011–2016CrossRef Trejo M, Douarche C, Bailleux V, Poulard C, Mariot S, Regeard C, Raspaud E (2013) Elasticity and wrinkled morphology of Bacillus subtilis pellicles. Proc Natl Acad Sci 110:2011–2016CrossRef
38.
go back to reference Verner SN, Garikipati K (2018) A computational study of the mechanisms of growth-driven folding patterns on shells, with application to the developing brain. Extreme Mech Lett 18:58–69CrossRef Verner SN, Garikipati K (2018) A computational study of the mechanisms of growth-driven folding patterns on shells, with application to the developing brain. Extreme Mech Lett 18:58–69CrossRef
39.
go back to reference Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth: model and numerical method. J Theor Biol 253(3):524–543MathSciNetCrossRefMATH Wise SM, Lowengrub JS, Frieboes HB, Cristini V (2008) Three-dimensional multispecies nonlinear tumor growth: model and numerical method. J Theor Biol 253(3):524–543MathSciNetCrossRefMATH
Metadata
Title
Finite strain visco-elastic growth driven by nutrient diffusion: theory, FEM implementation and an application to the biofilm growth
Author
Meisam Soleimani
Publication date
27-04-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2019
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01708-0

Other articles of this Issue 5/2019

Computational Mechanics 5/2019 Go to the issue