Skip to main content
Top

2015 | OriginalPaper | Chapter

2. First-Order Differential Calculus

Author : Stephen Bruce Sontz

Published in: Principal Bundles

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The construction of an adequate differential calculus for a given quantum space (generalizing the de Rham theory in the exterior algebra associated to a smooth manifold) is a nontrivial problem. And the resulting theory was not as one had anticipated and was even, at first, considered to be defective in some intuitive sense.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, 1980. E. Abe, Hopf Algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, 1980.
3.
go back to reference P.F. Baum, P.M Hajac, R. Matthes, and W. Szymański, Noncommutative geometry approach to principal and associated bundles, to appear in Quantum Symmetries in Noncommutative Geometry (P. M. Hajac, ed.) 2007. arXiv:math/0701033. P.F. Baum, P.M Hajac, R. Matthes, and W. Szymański, Noncommutative geometry approach to principal and associated bundles, to appear in Quantum Symmetries in Noncommutative Geometry (P. M. Hajac, ed.) 2007. arXiv:math/0701033.
4.
go back to reference P.F. Baum, K. De Commer, and P.M. Hajac, Free Actions of Compact Quantum Groups on Unital C ∗-algebras, arXiv:1304.2812v1 P.F. Baum, K. De Commer, and P.M. Hajac, Free Actions of Compact Quantum Groups on Unital C -algebras, arXiv:1304.2812v1
5.
go back to reference B. Blackadar, Operator Algebras, Springer, 2006. B. Blackadar, Operator Algebras, Springer, 2006.
6.
go back to reference T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993) 591–638. Erratum: Commun. Math. Phys. 167 (1995) 235. T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993) 591–638. Erratum: Commun. Math. Phys. 167 (1995) 235.
7.
go back to reference T. Brzeziński, Quantum Fibre Bundles. An Introduction. (1995) arXiv:q-alg/9508008. T. Brzeziński, Quantum Fibre Bundles. An Introduction. (1995) arXiv:q-alg/9508008.
8.
go back to reference T. Brzeziński, Translation map in quantum principal bundles, J. Geom. Phys. 20 (1996) 349. arXiv:hep-th/9407145v2. T. Brzeziński, Translation map in quantum principal bundles, J. Geom. Phys. 20 (1996) 349. arXiv:hep-th/9407145v2.
9.
go back to reference T. Brzeziński and P.M. Hajac, The Chern–Galois character, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 113–116. T. Brzeziński and P.M. Hajac, The Chern–Galois character, C. R. Acad. Sci. Paris, Ser. I 338 (2004) 113–116.
10.
go back to reference T. Brzezinski and P.M. Hajac, Galois-Type Extensions and Equivariant Projectivity, arXiv:0901.0141 T. Brzezinski and P.M. Hajac, Galois-Type Extensions and Equivariant Projectivity, arXiv:0901.0141
11.
go back to reference V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994. V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994.
12.
13.
go back to reference A. Connes, Noncommutative Geometry, Academic Press, 1994. A. Connes, Noncommutative Geometry, Academic Press, 1994.
14.
go back to reference C. Davis and E.W. Ellers, eds., The Coxeter Legacy, Reflections and Projections, Am. Math. Soc., 2006. C. Davis and E.W. Ellers, eds., The Coxeter Legacy, Reflections and Projections, Am. Math. Soc., 2006.
15.
go back to reference V.G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985) 254–258. V.G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985) 254–258.
16.
go back to reference M. Dubois-Violette, Dérivations et calcul differentiel non commutatif, C.R. Acad. Sci. Paris, 307 I (1988) 403–408. M. Dubois-Violette, Dérivations et calcul differentiel non commutatif, C.R. Acad. Sci. Paris, 307 I (1988) 403–408.
17.
go back to reference M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry of matrix algebras, J. Math. Phys. 31 (1990) 316–322.MATHMathSciNetCrossRef M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry of matrix algebras, J. Math. Phys. 31 (1990) 316–322.MATHMathSciNetCrossRef
18.
go back to reference M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys. 31 (1990) 323–330.MATHMathSciNetCrossRef M. Dubois-Violette, R. Kerner, and J. Madore, Noncommutative differential geometry and new models of gauge theory, J. Math. Phys. 31 (1990) 323–330.MATHMathSciNetCrossRef
19.
20.
go back to reference C.F. Dunkl, Reflection groups for analysis and applications, Japan. J. Math. 3 (2008) 215–246. DOI: 10.1007/s11537-008-0819-3 C.F. Dunkl, Reflection groups for analysis and applications, Japan. J. Math. 3 (2008) 215–246. DOI: 10.1007/s11537-008-0819-3
21.
go back to reference M. Ðurđevich, Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (1996) 457–520.CrossRef M. Ðurđevich, Geometry of quantum principal bundles I, Commun. Math. Phys. 175 (1996) 457–520.CrossRef
22.
go back to reference M. Ðurđevich, Geometry of quantum principal bundles II, extended version, Rev. Math. Phys. 9, No. 5 (1997) 531–607.MathSciNetCrossRef M. Ðurđevich, Geometry of quantum principal bundles II, extended version, Rev. Math. Phys. 9, No. 5 (1997) 531–607.MathSciNetCrossRef
23.
24.
go back to reference M. Ðurđevich, Quantum principal bundles as Hopf–Galois extensions, Acad. Res. 23 (2009) 41–49. M. Ðurđevich, Quantum principal bundles as Hopf–Galois extensions, Acad. Res. 23 (2009) 41–49.
25.
go back to reference M. Ðurđevich, Characteristic classes of quantum principal bundles, Alg. Groups Geom. 26 (2009) 241–341. M. Ðurđevich, Characteristic classes of quantum principal bundles, Alg. Groups Geom. 26 (2009) 241–341.
26.
go back to reference M. Ðurđevich, Geometry of quantum principal bundles III, Alg. Groups Geom. 27 (2010) 247–336. M. Ðurđevich, Geometry of quantum principal bundles III, Alg. Groups Geom. 27 (2010) 247–336.
27.
go back to reference M. Ðurđevich, Quantum classifying spaces and universal quantum characteristic classes, Banach Center Publ. 40 (1997) 315–327. M. Ðurđevich, Quantum classifying spaces and universal quantum characteristic classes, Banach Center Publ. 40 (1997) 315–327.
28.
29.
go back to reference M. Ðurđevich, Quantum principal bundles and corresponding gauge theories, J. Physics A: Math. Gen. 30 (1997) 2027–2054.CrossRef M. Ðurđevich, Quantum principal bundles and corresponding gauge theories, J. Physics A: Math. Gen. 30 (1997) 2027–2054.CrossRef
30.
go back to reference M. Ðurđevich, Quantum gauge transformations and braided structure on quantum principal bundles, Misc. Alg. 5 (2001) 5–30. M. Ðurđevich, Quantum gauge transformations and braided structure on quantum principal bundles, Misc. Alg. 5 (2001) 5–30.
32.
go back to reference D. Eisenbud, Commutative Algebra: With a View Towards Algebraic Geometry, Springer, 1995. D. Eisenbud, Commutative Algebra: With a View Towards Algebraic Geometry, Springer, 1995.
33.
go back to reference P. Etingof, Calogero–Moser Systems and Representation Theory, Euro. Math. Soc., 2007. P. Etingof, Calogero–Moser Systems and Representation Theory, Euro. Math. Soc., 2007.
34.
go back to reference R.P. Feynman, Feynman’s Office: The Last Blackboards, Phys. Today, 42, No. 2, (1989) p. 88. R.P. Feynman, Feynman’s Office: The Last Blackboards, Phys. Today, 42, No. 2, (1989) p. 88.
35.
go back to reference G.B. Folland, Quantum Field Theory, A Tourist Guide for Mathematicians, Math. Surv. Mono. 149, Am. Math. Soc. (2008). G.B. Folland, Quantum Field Theory, A Tourist Guide for Mathematicians, Math. Surv. Mono. 149, Am. Math. Soc. (2008).
36.
go back to reference L.C. Grove and C.T. Benson, Finite Reflection Groups, Springer, 1985. L.C. Grove and C.T. Benson, Finite Reflection Groups, Springer, 1985.
39.
go back to reference S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.
40.
go back to reference J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990.
41.
42.
go back to reference J.C. Jantzen, Lectures on Quantum Groups, Am. Math. Soc., 1996. J.C. Jantzen, Lectures on Quantum Groups, Am. Math. Soc., 1996.
43.
go back to reference M. Jimbo, A q-difference analogue of \(U(\mathfrak{g})\) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985) 63–69. M. Jimbo, A q-difference analogue of \(U(\mathfrak{g})\) and the Yang–Baxter equation, Lett. Math. Phys. 10 (1985) 63–69.
44.
go back to reference M. Jimbo, A q-analog of \(U(\mathfrak{g}\mathfrak{l}(N + 1))\), Hecke algebras and the Yang–Baxter equation, Lett. Math. Phys. 11 (1986) 247–252.MATHMathSciNetCrossRef M. Jimbo, A q-analog of \(U(\mathfrak{g}\mathfrak{l}(N + 1))\), Hecke algebras and the Yang–Baxter equation, Lett. Math. Phys. 11 (1986) 247–252.MATHMathSciNetCrossRef
45.
46.
go back to reference C. Kassel and V. Turaev, Braid Groups, Springer, 2008. C. Kassel and V. Turaev, Braid Groups, Springer, 2008.
47.
go back to reference M. Khalkhali, Basic Noncommutative Geometry, Eur. Math. Soc., 2009. M. Khalkhali, Basic Noncommutative Geometry, Eur. Math. Soc., 2009.
48.
go back to reference A. Klimyk and K. Schmudgen, Quantum Groups and Their Representations, Springer, 1997. A. Klimyk and K. Schmudgen, Quantum Groups and Their Representations, Springer, 1997.
49.
go back to reference S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley & Sons, 1963. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, John Wiley & Sons, 1963.
50.
go back to reference L.I. Korogodski and Y.S. Soibelman, Algebras of Functions on Quantum Groups: Part I, Am. Math. Soc., 1998. L.I. Korogodski and Y.S. Soibelman, Algebras of Functions on Quantum Groups: Part I, Am. Math. Soc., 1998.
51.
go back to reference P.P. Kulish and N.Yu. Reshetikhin, Quantum linear problem for the sine–Gordon equation and higher representations, Zap. Nauch. Sem. LOMI 101 (1981) 101–110.MathSciNet P.P. Kulish and N.Yu. Reshetikhin, Quantum linear problem for the sine–Gordon equation and higher representations, Zap. Nauch. Sem. LOMI 101 (1981) 101–110.MathSciNet
52.
go back to reference G. Landi, C. Pagani, and C. Reina, A Hopf bundle over a quantum four-sphere from the symplectic group, Commun. Math. Phys. 263 (2006) 65–88.MATHMathSciNetCrossRef G. Landi, C. Pagani, and C. Reina, A Hopf bundle over a quantum four-sphere from the symplectic group, Commun. Math. Phys. 263 (2006) 65–88.MATHMathSciNetCrossRef
53.
go back to reference G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993. G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993.
54.
go back to reference J. Madore, An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge University Press, 1995. J. Madore, An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge University Press, 1995.
55.
go back to reference S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995. S. Majid, Foundations of Quantum Group Theory, Cambridge University Press, 1995.
56.
go back to reference Yu. Manin, Quantum Groups and Non-Commutative Geometry, CRM, 1988. Yu. Manin, Quantum Groups and Non-Commutative Geometry, CRM, 1988.
57.
go back to reference Yu. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991. Yu. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991.
58.
go back to reference E.H. Moore, Concerning the abstract group of order k! and \(\frac{1} {2}k!\ldots\), Proc. London Math. Soc. (1) 28 (1897) 357–366. E.H. Moore, Concerning the abstract group of order k! and \(\frac{1} {2}k!\ldots\), Proc. London Math. Soc. (1) 28 (1897) 357–366.
59.
go back to reference F.J. Murray and J. von Neumann, On rings of operators, Ann. Math. 37 (1936) 116–229.CrossRef F.J. Murray and J. von Neumann, On rings of operators, Ann. Math. 37 (1936) 116–229.CrossRef
61.
62.
64.
go back to reference B. Parshall and J. Wang, Quantum linear groups, Mem. Am. Math. Soc. 439 1991. B. Parshall and J. Wang, Quantum linear groups, Mem. Am. Math. Soc. 439 1991.
67.
go back to reference N.Yu. Reshetikhin, L.A. Takhtadjian, and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193–225.MATHMathSciNet N.Yu. Reshetikhin, L.A. Takhtadjian, and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990) 193–225.MATHMathSciNet
68.
go back to reference M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93–135. math.CA/0210366. M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., Vol. 1817, Springer, Berlin, 2003, 93–135. math.CA/0210366.
69.
go back to reference M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Commum. Math. Phys. 192 (1998) 519–542. q-alg/9703006. M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Commum. Math. Phys. 192 (1998) 519–542. q-alg/9703006.
71.
go back to reference H.J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Isr. J. Math. 72 (1990) 167–195.MATHCrossRef H.J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Isr. J. Math. 72 (1990) 167–195.MATHCrossRef
72.
go back to reference H.J. Schneider, Hopf–Galois extensions, cross products, and Clifford theory, Eds. J. Bergen et al., Advances in Hopf Algebras. Conference, August 10–14, 1992, Chicago. New York: Marcel Dekker. Lect. Notes Pure Appl. Math. 158 (1994) 267–297. H.J. Schneider, Hopf–Galois extensions, cross products, and Clifford theory, Eds. J. Bergen et al., Advances in Hopf Algebras. Conference, August 10–14, 1992, Chicago. New York: Marcel Dekker. Lect. Notes Pure Appl. Math. 158 (1994) 267–297.
73.
go back to reference S. Shnider and S. Sternberg, Quantum Groups: From Coalgebras to Drinfeld Algebras, International Press, 1993. S. Shnider and S. Sternberg, Quantum Groups: From Coalgebras to Drinfeld Algebras, International Press, 1993.
74.
76.
go back to reference S.B. Sontz, Principal Bundles: The Classical Case, in preparation. S.B. Sontz, Principal Bundles: The Classical Case, in preparation.
77.
go back to reference B. Sutherland, Exact results for a quantum many-body problem in one-dimension. II, Phys. Rev. A 5 (1972) 1372–1376. B. Sutherland, Exact results for a quantum many-body problem in one-dimension. II, Phys. Rev. A 5 (1972) 1372–1376.
78.
go back to reference M.E. Sweedler, Hopf Algebras, W.A. Benjamin, New York, 1969. M.E. Sweedler, Hopf Algebras, W.A. Benjamin, New York, 1969.
79.
go back to reference M. Takeuchi, Quantum orthogonal and symplectic groups and their embedding into quantum GL, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989) 55–58.MATHMathSciNetCrossRef M. Takeuchi, Quantum orthogonal and symplectic groups and their embedding into quantum GL, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989) 55–58.MATHMathSciNetCrossRef
80.
go back to reference T. Timmermann, An Invitation to Quantum Groups and Duality, Euro. Math. Soc., 2008. T. Timmermann, An Invitation to Quantum Groups and Duality, Euro. Math. Soc., 2008.
81.
82.
go back to reference J.C. Varilly, An Introduction to Noncommutative Geometry, Eur. Math. Soc., 2006. J.C. Varilly, An Introduction to Noncommutative Geometry, Eur. Math. Soc., 2006.
83.
go back to reference S.L. Woronowicz, Pseudospaces, pseudogroups, and Pontryagin duality, in: Proceedings of the International Conference on Mathematics and Physics, Lausanne 1979, Lecture Notes in Physics, Vol. 116, pp. 407–412, Springer, 1980. S.L. Woronowicz, Pseudospaces, pseudogroups, and Pontryagin duality, in: Proceedings of the International Conference on Mathematics and Physics, Lausanne 1979, Lecture Notes in Physics, Vol. 116, pp. 407–412, Springer, 1980.
85.
go back to reference S.L. Woronowicz, Twisted SU(2) group. an example of a non-commutative differential calculus, Publ. RIMS., Kyoto Univ. 23 (1987) 117–181. S.L. Woronowicz, Twisted SU(2) group. an example of a non-commutative differential calculus, Publ. RIMS., Kyoto Univ. 23 (1987) 117–181.
86.
Metadata
Title
First-Order Differential Calculus
Author
Stephen Bruce Sontz
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-15829-7_2

Premium Partner