Skip to main content
Top
Published in: Journal of Materials Science 21/2015

01-11-2015 | Original Paper

First-principles study of Si and Mg segregation in grain boundaries in Al and Cu: application of local-energy decomposition

Authors: Hao Wang, Masanori Kohyama, Shingo Tanaka, Yoshinori Shiihara

Published in: Journal of Materials Science | Issue 21/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Segregation of Si and Mg at grain boundaries (GBs) in Al and Cu has been investigated using density-functional theory calculations combined with recently developed local-energy and local-stress schemes. The physics behind the impurity-segregation energy is effectively analyzed by the local-energy decomposition. For the \(\Sigma \)9 tilt and \(\Sigma \)5 twist GBs in Al and Cu, Si shows large segregation-energy gains only at tighter sites, where local configuration of remarkably short Si–Al or Si–Cu bonds with high charge densities of covalent-bonding features are formed, leading to the local-energy stabilization as the final-state effects. On the other hand, Mg shows large gains only at looser sites. For Mg in the Cu GBs, the formation of stable Mg–Cu bonds or Mg states at looser sites is the origin of the preferential segregation as the final-state effects. For Mg in the Al GBs, however, the local energies of Mg–Al bonds are not so stable at looser sites, while the instability of Al atoms at looser sites in pure GBs before substitution is the origin of the preferential segregation as the initial-state effects. The behaviors of Si and Mg in Al GBs are dominated by the difference in local sp bonding nature among Mg, Al and Si, while Si–Cu and Mg–Cu \(sp-d\) hybridization interactions dominate the behaviors of Si and Mg in Cu GBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Herbig M, Raabe D, Li YJ, Choi P, Zaefferer S, Goto S (2014) Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112:126103-1–126103-5CrossRef Herbig M, Raabe D, Li YJ, Choi P, Zaefferer S, Goto S (2014) Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112:126103-1–126103-5CrossRef
2.
go back to reference Lejček P (2010) Grain boundary segregation in metals. Springer, Berlin Lejček P (2010) Grain boundary segregation in metals. Springer, Berlin
3.
go back to reference Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng A 497:168–173CrossRef Edalati K, Fujioka T, Horita Z (2008) Microstructure and mechanical properties of pure Cu processed by high-pressure torsion. Mater Sci Eng A 497:168–173CrossRef
4.
go back to reference Ito Y, Horita Z (2009) Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater Sci Eng A 503:32–36CrossRef Ito Y, Horita Z (2009) Microstructural evolution in pure aluminum processed by high-pressure torsion. Mater Sci Eng A 503:32–36CrossRef
5.
go back to reference Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298:807–811CrossRef Ogata S, Li J, Yip S (2002) Ideal pure shear strength of aluminum and copper. Science 298:807–811CrossRef
6.
go back to reference Carling K, Wahnström G, Mattsson TR, Mattsson AE, Sandberg N, Grimvall G (2000) Vacancies in metals: from first-principles calculations to experimental data. Phys Rev Lett 85:3862–3865CrossRef Carling K, Wahnström G, Mattsson TR, Mattsson AE, Sandberg N, Grimvall G (2000) Vacancies in metals: from first-principles calculations to experimental data. Phys Rev Lett 85:3862–3865CrossRef
7.
go back to reference Uesugi T, Kohyama M, Higashi K (2003) Ab initio study on divacancy binding energies in aluminum and magnesium. Phys Rev B 68:184103-1–184103-5CrossRef Uesugi T, Kohyama M, Higashi K (2003) Ab initio study on divacancy binding energies in aluminum and magnesium. Phys Rev B 68:184103-1–184103-5CrossRef
8.
go back to reference Wang RZ, Kohyama M, Tanaka S, Tamura T, Ishibashi S (2009) First-principles study of the stability and interfacial bonding of tilt and twist grain boundaries in Al and Cu. Mater Trans 50:11–18CrossRef Wang RZ, Kohyama M, Tanaka S, Tamura T, Ishibashi S (2009) First-principles study of the stability and interfacial bonding of tilt and twist grain boundaries in Al and Cu. Mater Trans 50:11–18CrossRef
9.
go back to reference Wang RZ, Tanaka S, Kohyama M (2012) First-principles tensile tests of tilt and twist grain boundaries in Al. Mater Trans 53:140–146CrossRef Wang RZ, Tanaka S, Kohyama M (2012) First-principles tensile tests of tilt and twist grain boundaries in Al. Mater Trans 53:140–146CrossRef
10.
go back to reference Shiihara Y, Kohyama M, Ishibashi S (2010) Ab initio local stress and its application to Al (111) surfaces. Phys Rev B 81:075441-1–075441-1CrossRef Shiihara Y, Kohyama M, Ishibashi S (2010) Ab initio local stress and its application to Al (111) surfaces. Phys Rev B 81:075441-1–075441-1CrossRef
11.
go back to reference Muller DA, Mills MJ (1999) Electron microscopy: probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Mater Sci Eng A 260:12–28CrossRef Muller DA, Mills MJ (1999) Electron microscopy: probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Mater Sci Eng A 260:12–28CrossRef
12.
go back to reference Hu JR, Chang SC, Chen FR, Kai JJ (2002) HRTEM investigation of the multiplicity of \(\Sigma \)=9[\(0\overline{1}1\)]/(122) symmetric tilt grain boundary in Cu. Mater Chem Phys 74:313–319CrossRef Hu JR, Chang SC, Chen FR, Kai JJ (2002) HRTEM investigation of the multiplicity of \(\Sigma \)=9[\(0\overline{1}1\)]/(122) symmetric tilt grain boundary in Cu. Mater Chem Phys 74:313–319CrossRef
13.
go back to reference Wang H, Kohyama M, Tanaka S, Shiihara Y (2013) Ab initio local energy and local stress: application to tilt and twist grain boundaries in Cu and Al. J Phys Condens Matter 25:305006-1–305006-13 Wang H, Kohyama M, Tanaka S, Shiihara Y (2013) Ab initio local energy and local stress: application to tilt and twist grain boundaries in Cu and Al. J Phys Condens Matter 25:305006-1–305006-13
14.
go back to reference Na SH, Yang MS, Nam SW (1995) Effects of stress amplitude and internal stress on the grain boundary deformation behavior under high temperature creep in an Al-2.9%Mg alloy. Scr Metall 32:627–632CrossRef Na SH, Yang MS, Nam SW (1995) Effects of stress amplitude and internal stress on the grain boundary deformation behavior under high temperature creep in an Al-2.9%Mg alloy. Scr Metall 32:627–632CrossRef
15.
go back to reference Song RG, Tseng MK, Zhang BJ, Liu J, Jin ZH, Shin KS (1996) Grain boundary segregation and hydrogen-induced fracture in 7050 aluminum alloy. Acta Mater 44:3241–3248CrossRef Song RG, Tseng MK, Zhang BJ, Liu J, Jin ZH, Shin KS (1996) Grain boundary segregation and hydrogen-induced fracture in 7050 aluminum alloy. Acta Mater 44:3241–3248CrossRef
16.
go back to reference Horikawa K, Kuramoto S, Kanno M (2001) Intergranular fracture caused by trace impurities in an Al-5.5 mol% Mg alloy. Acta Mater 49:3981–3989CrossRef Horikawa K, Kuramoto S, Kanno M (2001) Intergranular fracture caused by trace impurities in an Al-5.5 mol% Mg alloy. Acta Mater 49:3981–3989CrossRef
17.
go back to reference Terada D, Masui T, Kamikawa N, Tsuji N (2008) Microstructure and mechanical properties of Al-0.5 at.% X (=Si, Ag, Mg) alloys highly deformed by ARB process. Mater Sci Forum 584–586:547–552CrossRef Terada D, Masui T, Kamikawa N, Tsuji N (2008) Microstructure and mechanical properties of Al-0.5 at.% X (=Si, Ag, Mg) alloys highly deformed by ARB process. Mater Sci Forum 584–586:547–552CrossRef
18.
go back to reference Liu XY, Adams JB (1998) Grain-boundary segregation in Al-10%Mg alloys at hot working temperature. Acta Mater 46:3467–3476CrossRef Liu XY, Adams JB (1998) Grain-boundary segregation in Al-10%Mg alloys at hot working temperature. Acta Mater 46:3467–3476CrossRef
19.
go back to reference Namilae S, Chandra N, Nieh TG (2002) Atomistic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals. Scr Mater 46:49–54CrossRef Namilae S, Chandra N, Nieh TG (2002) Atomistic simulation of grain boundary sliding in pure and magnesium doped aluminum bicrystals. Scr Mater 46:49–54CrossRef
20.
go back to reference Liu X, Wang X, Wang J, Zhang H (2005) First-principles investigation of Mg segregation at \(\Sigma \) = 11(113) grain boundaries in Al. J Phys Condens Matter 17:4301–4308CrossRef Liu X, Wang X, Wang J, Zhang H (2005) First-principles investigation of Mg segregation at \(\Sigma \) = 11(113) grain boundaries in Al. J Phys Condens Matter 17:4301–4308CrossRef
21.
22.
go back to reference Razumovskiy VI, Ruban AV, Razumovskii IM, Lozovoi AY, Butrim VN, Vekilov YuKh (2011) The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: an ab initio study. Scr Mater 65:926–929CrossRef Razumovskiy VI, Ruban AV, Razumovskii IM, Lozovoi AY, Butrim VN, Vekilov YuKh (2011) The effect of alloying elements on grain boundary and bulk cohesion in aluminum alloys: an ab initio study. Scr Mater 65:926–929CrossRef
23.
go back to reference Thomson DI, Heine V, Payne MC, Marzari N, Finnis MW (2000) Insight into gallium behavior in aluminum grain boundaries from calculation on \(\Sigma \) = 11(113) boundary. Acta Mater 48:3623–3632CrossRef Thomson DI, Heine V, Payne MC, Marzari N, Finnis MW (2000) Insight into gallium behavior in aluminum grain boundaries from calculation on \(\Sigma \) = 11(113) boundary. Acta Mater 48:3623–3632CrossRef
24.
go back to reference Zhang Y, Lu GH, Hu X, Wang T, Kohyama M, Yamamoto R (2007) First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism. J Phys Condens Matter 19:456225-1–456225-8 Zhang Y, Lu GH, Hu X, Wang T, Kohyama M, Yamamoto R (2007) First-principles computational tensile test on a Na-segregated Al grain boundary with an Si additive and an intergranular embrittlement suppression mechanism. J Phys Condens Matter 19:456225-1–456225-8
25.
go back to reference Lu GH, Suzuki A, Ito A, Kohyama M, Yamamoto R (2000) Comparison of effects of sodium and silicon impurities on aluminium grain boundaries by first-principles calculation, Modell Simul Mater Sci Eng 8:727–736; (2003) Effects of Impurities on an Al Grain Boundary. Mater Trans 44:337–343CrossRef Lu GH, Suzuki A, Ito A, Kohyama M, Yamamoto R (2000) Comparison of effects of sodium and silicon impurities on aluminium grain boundaries by first-principles calculation, Modell Simul Mater Sci Eng 8:727–736; (2003) Effects of Impurities on an Al Grain Boundary. Mater Trans 44:337–343CrossRef
26.
go back to reference Kunimine T, Fujii T, Onaka S, Tsuji N, Kato M (2011) Effects of Si addition on mechanical properties of copper severely deformed by accumulative roll-bonding. J Mater Sci 46:4290–4295. doi:10.1007/s10853-010-5235-4 CrossRef Kunimine T, Fujii T, Onaka S, Tsuji N, Kato M (2011) Effects of Si addition on mechanical properties of copper severely deformed by accumulative roll-bonding. J Mater Sci 46:4290–4295. doi:10.​1007/​s10853-010-5235-4 CrossRef
27.
go back to reference Nishikawa K, Semboshi S, Konno TJ (2007) Transmission electron microscopy observations on Cu-Mg alloy systems. Solid State Phenom 127:103–108CrossRef Nishikawa K, Semboshi S, Konno TJ (2007) Transmission electron microscopy observations on Cu-Mg alloy systems. Solid State Phenom 127:103–108CrossRef
28.
go back to reference Lozovoi AY, Paxton AT, Finnis MW (2006) Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first-principles calculations for copper. Phys Rev B 74:155416-1–155416-13CrossRef Lozovoi AY, Paxton AT, Finnis MW (2006) Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first-principles calculations for copper. Phys Rev B 74:155416-1–155416-13CrossRef
29.
go back to reference Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRef
30.
go back to reference Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775CrossRef
31.
go back to reference Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRef
32.
go back to reference Kr Bhattacharya S, Tanaka S, Shiihara Y, Kohyama M (2013) Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress. J Phys Condens Matter 25:135004-1–135004-14 Kr Bhattacharya S, Tanaka S, Shiihara Y, Kohyama M (2013) Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress. J Phys Condens Matter 25:135004-1–135004-14
33.
go back to reference Bhattacharya SKR, Tanaka S, Shiihara Y, Kohyama M (2014) Ab initio perspective of the \(\langle 110\rangle \) symmetrical tilt grain boundaries in bcc Fe: application of local energy and local stress. J Mater Sci 49:3980–3995. doi:10.1007/s10853-014-8038-1 CrossRef Bhattacharya SKR, Tanaka S, Shiihara Y, Kohyama M (2014) Ab initio perspective of the \(\langle 110\rangle \) symmetrical tilt grain boundaries in bcc Fe: application of local energy and local stress. J Mater Sci 49:3980–3995. doi:10.​1007/​s10853-014-8038-1 CrossRef
34.
go back to reference Kr Bhattacharya S, Kohyama M, Tanaka S, Shiihara Y (2014) Si segregation at Fe grain boundaries analyzed by ab initio local energy and local stress. J Phys Condens Matter 26:355005-1–355005-18 Kr Bhattacharya S, Kohyama M, Tanaka S, Shiihara Y (2014) Si segregation at Fe grain boundaries analyzed by ab initio local energy and local stress. J Phys Condens Matter 26:355005-1–355005-18
35.
go back to reference Chetty N, Martin RM (1992) First-principles energy density and its applications to selected polar surfaces. Phys Rev B 45:6074–6088CrossRef Chetty N, Martin RM (1992) First-principles energy density and its applications to selected polar surfaces. Phys Rev B 45:6074–6088CrossRef
36.
go back to reference Chetty N, Martin RM (1992) GaAs (111) and (\(\overline{1}\overline{1}\overline{1}\)) surfaces and the GaAs/AlAs (111) heterojunction studied using a local energy density. Phys Rev B 45:6089CrossRef Chetty N, Martin RM (1992) GaAs (111) and (\(\overline{1}\overline{1}\overline{1}\)) surfaces and the GaAs/AlAs (111) heterojunction studied using a local energy density. Phys Rev B 45:6089CrossRef
37.
go back to reference Filippetti A, Fiorentini V (2000) Theory and applications of the stress density. Phys Rev B 61:8433–8442CrossRef Filippetti A, Fiorentini V (2000) Theory and applications of the stress density. Phys Rev B 61:8433–8442CrossRef
38.
go back to reference Nielsen OH, Martin RM (1985) Quantum-mechanical theory of stress and force. Phys Rev B 32:3780–3791CrossRef Nielsen OH, Martin RM (1985) Quantum-mechanical theory of stress and force. Phys Rev B 32:3780–3791CrossRef
39.
go back to reference Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford
40.
go back to reference Yu M, Trinkle DR (2011) Accurate and efficient algorithm for Bader charge integration. J Chem Phys 134:064111-1–064111-8 Yu M, Trinkle DR (2011) Accurate and efficient algorithm for Bader charge integration. J Chem Phys 134:064111-1–064111-8
41.
go back to reference Yu M, Trinkle DR, Martin RM (2011) Energy density in density functional theory: application to crystalline defects and surfaces. Phys Rev B 83:115113-1–115113-10 Yu M, Trinkle DR, Martin RM (2011) Energy density in density functional theory: application to crystalline defects and surfaces. Phys Rev B 83:115113-1–115113-10
43.
go back to reference Ishibashi S, Tamura T, Tanaka S, Kohyama M, Terakura K (2007) Ab initio calculations of electric-field-induced stress profiles for diamond/c-BN (110) superlattices. Phys Rev B 76:153310-1–153310-4CrossRef Ishibashi S, Tamura T, Tanaka S, Kohyama M, Terakura K (2007) Ab initio calculations of electric-field-induced stress profiles for diamond/c-BN (110) superlattices. Phys Rev B 76:153310-1–153310-4CrossRef
44.
go back to reference Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York
45.
go back to reference Becke AD (1988) A multicenter numerical Integration scheme for polyatomic molecules. J Comput Phys 88:2547–2553 Becke AD (1988) A multicenter numerical Integration scheme for polyatomic molecules. J Comput Phys 88:2547–2553
46.
go back to reference Turner DE, Zhu ZZ, Chan CT, Ho KM (1997) Energetics of vacancy and substitutional impurities in aluminum bulk and clusters. Phys Rev B 55:13842–13852CrossRef Turner DE, Zhu ZZ, Chan CT, Ho KM (1997) Energetics of vacancy and substitutional impurities in aluminum bulk and clusters. Phys Rev B 55:13842–13852CrossRef
47.
go back to reference Chetty N, Weinert M, Rahman TS, Davenport JW (1995) Vacancies and impurities in aluminum and magnesium. Phys Rev B 52:6313–6326CrossRef Chetty N, Weinert M, Rahman TS, Davenport JW (1995) Vacancies and impurities in aluminum and magnesium. Phys Rev B 52:6313–6326CrossRef
48.
go back to reference Ullmaier H (ed) (1991) Atomic defects in metals. Springer, Berlin Ullmaier H (ed) (1991) Atomic defects in metals. Springer, Berlin
49.
go back to reference Cruz CA, Chantrenne P, Veiga RGA, Perez M, Kleber X (2013) Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems: A molecular dynamics study. J Appl Phys 113:023710-1–023710-9CrossRef Cruz CA, Chantrenne P, Veiga RGA, Perez M, Kleber X (2013) Modified embedded-atom method interatomic potential and interfacial thermal conductance of Si-Cu systems: A molecular dynamics study. J Appl Phys 113:023710-1–023710-9CrossRef
50.
go back to reference Chen W, Sun J (2006) The electronic structure and mechanical properties of MgCu\(_2\) Laves phase compound. Physica B 382:279–284CrossRef Chen W, Sun J (2006) The electronic structure and mechanical properties of MgCu\(_2\) Laves phase compound. Physica B 382:279–284CrossRef
51.
go back to reference Ganeshan S, Shang SL, Zhang H, Wang Y, Mantina M, Liu ZK (2009) Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics 17:313–318CrossRef Ganeshan S, Shang SL, Zhang H, Wang Y, Mantina M, Liu ZK (2009) Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics 17:313–318CrossRef
52.
go back to reference Mao P, Yu B, Liu Z, Wang F, Ju Y (2013) First-principles calculations of structural, elastic and electronic properties of AB\(_2\) type intermetallics in Mg-Zn-Ca-Cu alloy. J Mag Alloys 1:256–262CrossRef Mao P, Yu B, Liu Z, Wang F, Ju Y (2013) First-principles calculations of structural, elastic and electronic properties of AB\(_2\) type intermetallics in Mg-Zn-Ca-Cu alloy. J Mag Alloys 1:256–262CrossRef
53.
go back to reference Lejček P, Šob M, Paidar V, Vitek V (2013) Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low. Scr Mater 68:547–550CrossRef Lejček P, Šob M, Paidar V, Vitek V (2013) Why calculated energies of grain boundary segregation are unreliable when segregant solubility is low. Scr Mater 68:547–550CrossRef
54.
go back to reference Seah MP, Hondros ED (1973) Grain boundary segregation. Proc R Soc Lond A 335:191–212CrossRef Seah MP, Hondros ED (1973) Grain boundary segregation. Proc R Soc Lond A 335:191–212CrossRef
55.
go back to reference McLean D (1957) Grain boundaries in metals. Oxford University Press, London McLean D (1957) Grain boundaries in metals. Oxford University Press, London
56.
go back to reference Rice JR, Wang JS (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng A 107:23–40CrossRef Rice JR, Wang JS (1989) Embrittlement of interfaces by solute segregation. Mater Sci Eng A 107:23–40CrossRef
57.
go back to reference Sato Y, Roh J-Y, Ikuhara Y (2013) Grain-boundary structural transformation induced by geometry and chemistry. Phys Rev B 87:140101-1–140101-4 Sato Y, Roh J-Y, Ikuhara Y (2013) Grain-boundary structural transformation induced by geometry and chemistry. Phys Rev B 87:140101-1–140101-4
Metadata
Title
First-principles study of Si and Mg segregation in grain boundaries in Al and Cu: application of local-energy decomposition
Authors
Hao Wang
Masanori Kohyama
Shingo Tanaka
Yoshinori Shiihara
Publication date
01-11-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9294-4

Other articles of this Issue 21/2015

Journal of Materials Science 21/2015 Go to the issue

Premium Partners